Menu Close

Question-107178




Question Number 107178 by 175mohamed last updated on 09/Aug/20
Commented by mr W last updated on 09/Aug/20
=(((√3)−1)/2)+(((√5)−(√3))/2)+...+(((√(169))−(√(167)))/2)  =(((√(169))−1)/2)  =6
$$=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}}{\mathrm{2}}+…+\frac{\sqrt{\mathrm{169}}−\sqrt{\mathrm{167}}}{\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{169}}−\mathrm{1}}{\mathrm{2}} \\ $$$$=\mathrm{6} \\ $$
Answered by Dwaipayan Shikari last updated on 09/Aug/20
First term  (1/(1+(√3)))=(((√3)−1)/2)=((√3)/2)−(1/2)  2nd term=(1/( (√3)+(√5)))=(((√5)−(√3))/2)  ...  (1/( (√(167))+(√(169))))=(((√(169))−(√(167)))/2)  ((√3)/2)−(1/2)+((√5)/2)−((√3)/2)+....((√(167))/2)−((√(165))/2)+((√(169))/2)−((√(167))/2)  =6
$$\mathrm{First}\:\mathrm{term} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{3}}}=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2nd}\:\mathrm{term}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\sqrt{\mathrm{5}}}=\frac{\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$… \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{167}}+\sqrt{\mathrm{169}}}=\frac{\sqrt{\mathrm{169}}−\sqrt{\mathrm{167}}}{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+….\frac{\sqrt{\mathrm{167}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{165}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{169}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{167}}}{\mathrm{2}} \\ $$$$=\mathrm{6} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *