Menu Close

Question-107461




Question Number 107461 by Don08q last updated on 10/Aug/20
Commented by john santu last updated on 11/Aug/20
(iii) y=x^3 +(k+2)x^2 −3kx+5  ⇒y′=3x^2 +2(k+2)x−3k  ⇒Δ= 4(k+2)^2 −4.3.(−3k)=0  ⇒(k+2)^2 +9k=0  ⇒k^2 +13k+4=0   k = ((−13 ±(√(169−4.1.4)))/2)=((−13±(√(153)))/2)  k=((−13 ± 3(√(17)))/2) .
(iii)y=x3+(k+2)x23kx+5y=3x2+2(k+2)x3kΔ=4(k+2)24.3.(3k)=0(k+2)2+9k=0k2+13k+4=0k=13±1694.1.42=13±1532k=13±3172.
Answered by john santu last updated on 11/Aug/20
       ⋇JS⋇  ⇒y=ax^3 +bx^2 +cx+d ⇒has a  vertex if y′=0   ⇒y′ = 3ax^2 +2bx+c = 0  ⇒x = ((−2b ± (√(4b^2 −4.3a.c)))/(6a))  x = ((−2b±2(√(b^2 −3ac)))/(6a))=((−b±(√(b^2 −3ac)))/(3a))
JSy=ax3+bx2+cx+dhasavertexify=0y=3ax2+2bx+c=0x=2b±4b24.3a.c6ax=2b±2b23ac6a=b±b23ac3a
Commented by john santu last updated on 11/Aug/20
(ii) no vertex if b^2 −3ac < 0  ⇒(b−(√(3ac)))(b+(√(3ac))) < 0  ⇒ −(√(3ac)) < b < (√(3ac))
(ii)novertexifb23ac<0(b3ac)(b+3ac)<03ac<b<3ac
Commented by Don08q last updated on 11/Aug/20
Thank you Sir
ThankyouSir
Answered by 1549442205PVT last updated on 11/Aug/20
We need to have the hypothesis that  a,b≠0.Then denote by C the graph of  y=ax^3 +bx^2 +cx+d.We have  y′=3ax^2 +2bx+c=0⇔x_(1,2) =((−b±(√(b^2 −3ac)))/(3a))  y′′=6ax+2b=0⇔x_0 =−b/3a  i)if Δ=b^2 −3ac>0 the eqn.y′=0 has   two real roots and y′ change the sign when  passes through its roots ,so the curve  C has two  extremums points(vertexes)  ii)If b^2 −3ac=0 then x_0 =x_1 =x_2 =−b/3a.  Then the  given function has no  extremum  (vertex) because y′don′t change the  sign when go through x_0 .Hence,the  condition need and enough for the curve  of degree 3 has a saddle point be   Δ=b^2 −3ac=0  iii)The curve y=x^3 +(k+2)x^2 −3kx+5(C_k )  has the saddle point if and only if   y′=3x^2 +2(k+2)x−3k=0 has unique root  ⇔Δ′=(k+2)^2 +9k=0⇔k^2 +13k+4=0  ⇔k_(1,2) =((−13±3(√(17)))/2).Then x_0 =((−(k+2))/3)  +)for k_1 =((−13+3(√(17)))/2)⇒x_0 =−((−9+3(√(17)))/6)  +)For k_2 =((−13−3(√(17)))/2)⇒x_0 =((9+3(√(17)))/6)  Thus,C_k  has the saddle point if and   only if k=((−13±3(√(17)))/2)
Weneedtohavethehypothesisthata,b0.ThendenotebyCthegraphofy=ax3+bx2+cx+d.Wehavey=3ax2+2bx+c=0x1,2=b±b23ac3ay=6ax+2b=0x0=b/3ai)ifΔ=b23ac>0theeqn.y=0hastworealrootsandychangethesignwhenpassesthroughitsroots,sothecurveChastwoextremumspoints(vertexes)ii)Ifb23ac=0thenx0=x1=x2=b/3a.Thenthegivenfunctionhasnoextremum(vertex)becauseydontchangethesignwhengothroughx0.Hence,theconditionneedandenoughforthecurveofdegree3hasasaddlepointbeΔ=b23ac=0iii)Thecurvey=x3+(k+2)x23kx+5(Ck)hasthesaddlepointifandonlyify=3x2+2(k+2)x3k=0hasuniquerootΔ=(k+2)2+9k=0k2+13k+4=0k1,2=13±3172.Thenx0=(k+2)3+)fork1=13+3172x0=9+3176+)Fork2=133172x0=9+3176Thus,Ckhasthesaddlepointifandonlyifk=13±3172
Commented by Don08q last updated on 11/Aug/20
Comprehensive explanation. Thank you
Comprehensiveexplanation.Thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *