Menu Close

Question-107496




Question Number 107496 by mathdave last updated on 11/Aug/20
Answered by bemath last updated on 11/Aug/20
   ∦BeMath∦  =∫ (1+tan^2 x)^2  sec^2 x dx   =∫ (1+u^2 )^2  du  [ u = tan x ]  =∫ (1+2u^2 +u^4 ) du   =u+(2/3)u^3 +(1/5)u^5  + C  =tan x(1+(2/3)tan^2 x+(1/5)tan^4 x)+C
$$\:\:\:\nparallel\mathcal{B}{e}\mathcal{M}{ath}\nparallel \\ $$$$=\int\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)^{\mathrm{2}} \:\mathrm{sec}\:^{\mathrm{2}} {x}\:{dx}\: \\ $$$$=\int\:\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} \:{du}\:\:\left[\:{u}\:=\:\mathrm{tan}\:{x}\:\right] \\ $$$$=\int\:\left(\mathrm{1}+\mathrm{2}{u}^{\mathrm{2}} +{u}^{\mathrm{4}} \right)\:{du}\: \\ $$$$={u}+\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{5}}{u}^{\mathrm{5}} \:+\:{C} \\ $$$$=\mathrm{tan}\:{x}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{2}} {x}+\frac{\mathrm{1}}{\mathrm{5}}\mathrm{tan}\:^{\mathrm{4}} {x}\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *