Question Number 107696 by ajfour last updated on 12/Aug/20
Commented by ajfour last updated on 12/Aug/20
$${If}\:{both}\:{circles}\:{have}\:{the}\:{equal}\:{radius}, \\ $$$${find}\:{the}\:{radius}. \\ $$
Answered by mr W last updated on 20/Aug/20
Commented by mr W last updated on 21/Aug/20
$${A}\left({a},{a}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}\:\theta={y}'=\mathrm{2}{a} \\ $$$${B}\left({b},{b}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}\:\varphi={y}'=\mathrm{2}{b} \\ $$$$ \\ $$$${x}_{{C}} ={a}−{r}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$${y}_{{C}} ={a}^{\mathrm{2}} +{r}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{a}=\frac{\mathrm{tan}\:\theta}{\mathrm{2}}={r}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{r}} \\ $$$${y}_{{C}} =\frac{\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\theta}+\frac{\mathrm{1}}{\mathrm{2}}={r}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${x}_{{D}} ={b}−{r}\:\mathrm{sin}\:\varphi={r} \\ $$$${y}_{{D}} ={b}^{\mathrm{2}} +{r}\:\mathrm{cos}\:\varphi \\ $$$${b}=\frac{\mathrm{tan}\:\varphi}{\mathrm{2}}={r}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right) \\ $$$$\Rightarrow{r}=\frac{\mathrm{tan}\:\varphi}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)} \\ $$$${y}_{{D}} ={r}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\varphi+\mathrm{2}\:\mathrm{sin}\:\varphi\right)+{r}\:\mathrm{cos}\:\varphi \\ $$$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} =\left({y}_{{D}} −{y}_{{C}} \right)^{\mathrm{2}} \\ $$$$\mathrm{3}{r}^{\mathrm{2}} =\left[{r}^{\mathrm{2}} \mathrm{sin}\:\varphi\left(\mathrm{2}+\mathrm{sin}\:\varphi\right)+{r}\:\mathrm{cos}\:\varphi−\frac{\mathrm{1}}{\mathrm{4}}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{12}\:\mathrm{tan}^{\mathrm{2}} \:\varphi}{\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)^{\mathrm{2}} }=\left[\frac{\mathrm{tan}^{\mathrm{2}} \:\varphi\:\mathrm{sin}\:\varphi\:\left(\mathrm{2}+\mathrm{sin}\:\varphi\right)}{\left(\mathrm{1}+\mathrm{sin}\:\varphi\right)^{\mathrm{2}} }+\frac{\mathrm{2}\:\mathrm{sin}\:\varphi}{\mathrm{1}+\mathrm{sin}\:\varphi}−\mathrm{1}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\varphi=\mathrm{1}.\mathrm{1875}=\mathrm{68}.\mathrm{039}° \\ $$$$\Rightarrow{r}=\mathrm{0}.\mathrm{6433} \\ $$
Commented by mr W last updated on 20/Aug/20
Commented by ajfour last updated on 21/Aug/20
$${Thank}\:{u}\:{Sir},\:{marvellous}\:{solution}! \\ $$