Menu Close

Question-107718




Question Number 107718 by mohammad17 last updated on 12/Aug/20
Answered by Aziztisffola last updated on 12/Aug/20
Σ_(n=1) ^∞ z_n ^− =Σ_(n=1) ^∞ z_n ^(−) = s^−
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\overset{−} {\mathrm{z}}_{\mathrm{n}} =\overline {\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{z}_{\mathrm{n}} }=\:\overset{−} {\mathrm{s}} \\ $$
Commented by mohammad17 last updated on 12/Aug/20
sir i want details the solution
$${sir}\:{i}\:{want}\:{details}\:{the}\:{solution} \\ $$
Commented by Aziztisffola last updated on 12/Aug/20
z_1 +z_2 ^(−) =z_1 ^− +z_2 ^−   z_1 ^− +z_2 ^− +...+z_n ^− +...=z_1 +z_2 +...+z_n +...^(−)   =s^−
$$\overline {\mathrm{z}_{\mathrm{1}} +\mathrm{z}_{\mathrm{2}} }=\overset{−} {\mathrm{z}}_{\mathrm{1}} +\overset{−} {\mathrm{z}}_{\mathrm{2}} \\ $$$$\overset{−} {\mathrm{z}}_{\mathrm{1}} +\overset{−} {\mathrm{z}}_{\mathrm{2}} +…+\overset{−} {\mathrm{z}}_{\mathrm{n}} +…=\overline {\mathrm{z}_{\mathrm{1}} +\mathrm{z}_{\mathrm{2}} +…+\mathrm{z}_{\mathrm{n}} +…} \\ $$$$=\overset{−} {\mathrm{s}} \\ $$
Commented by mohammad17 last updated on 12/Aug/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by Aziztisffola last updated on 12/Aug/20
you′re welcome
$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *