Question Number 107941 by mohammad17 last updated on 13/Aug/20
Commented by kaivan.ahmadi last updated on 13/Aug/20
$$\frac{\partial\theta}{\partial{t}}={nt}^{{n}−\mathrm{1}} {e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} +{t}^{{n}} \frac{{r}^{\mathrm{2}} }{\mathrm{2}{t}^{\mathrm{2}} }{e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} =\left({nt}^{{n}−\mathrm{1}} +\frac{{r}^{\mathrm{2}} }{\mathrm{2}}{t}^{{n}−\mathrm{2}} \right){e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} \:\left(\ast\right) \\ $$$${and} \\ $$$$\frac{\partial\theta}{\partial{r}}={t}^{{n}} \:\frac{−\mathrm{2}{r}}{\mathrm{2}{t}}{e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} =−{rt}^{{n}−\mathrm{1}} {e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} \\ $$$${and} \\ $$$$\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\theta}{\partial{r}}\right)=\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial}{\partial{r}}\left(−{r}^{\mathrm{3}} {t}^{{n}−\mathrm{1}} {e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} \right)= \\ $$$$\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\left(−\mathrm{3}{r}^{\mathrm{2}} {t}^{{n}−\mathrm{1}} {e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} +{r}^{\mathrm{4}} {t}^{{n}−\mathrm{2}} {e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} \right)= \\ $$$$\left(−\mathrm{3}{t}^{{n}−\mathrm{1}} +{r}^{\mathrm{2}} {t}^{{n}−\mathrm{2}} \right){e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} \:\:\:\left(\ast\ast\right) \\ $$$${and}\:{from}\:\left(\ast\right)=\left(\ast\ast\right)\:\:{we}\:{have} \\ $$$$−\mathrm{3}{t}^{{n}−\mathrm{1}} +{r}^{\mathrm{2}} {t}^{{n}−\mathrm{2}} ={nt}^{{n}−\mathrm{1}} +\frac{{r}^{\mathrm{2}} }{\mathrm{2}}{t}^{{n}−\mathrm{2}} \Rightarrow \\ $$$$\left({n}+\mathrm{3}\right){t}^{{n}−\mathrm{1}} +\left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}}−{r}^{\mathrm{2}} \right){t}^{{n}−\mathrm{2}} =\mathrm{0}\Rightarrow \\ $$$$\left({n}+\mathrm{3}\right){t}^{{n}−\mathrm{1}} −\frac{{r}^{\mathrm{2}} }{\mathrm{2}}{t}^{{n}−\mathrm{2}} =\mathrm{0}\Rightarrow \\ $$$$\left({n}+\mathrm{3}\right){t}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0}\Rightarrow{n}+\mathrm{3}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}{t}}\Rightarrow{n}=−\mathrm{3}+\frac{{r}^{\mathrm{2}} }{\mathrm{2}{t}} \\ $$