Menu Close

Question-108104




Question Number 108104 by bemath last updated on 14/Aug/20
Answered by bobhans last updated on 14/Aug/20
     ((BobHans)/★)  (1) let the curve y = f(x) with gradient = (dy/dx)  where (dy/dx) = k (((y−2)/(x−1))) or (dy/(y−2)) = k (dx/(x−1))  ∫ (dy/(y−2)) = ∫ ((k dx)/(x−1)) ⇒ln (y−2)= k ln (x−1) + c  substitute the point (2,5) & (9,8)  ⇒ { (((2,5)→ln (3)= k. ln (1) + c , c = ln (3))),(((9,8)→ln (6) = k.ln (8)+ ln (3)⇒k=(1/3))) :}  therefore ⇒ln (y−2)=(1/3)ln (x−1)+ln (3)  y−2 = 3 .((x−1))^(1/3)  .
BobHans(1)letthecurvey=f(x)withgradient=dydxwheredydx=k(y2x1)ordyy2=kdxx1dyy2=kdxx1ln(y2)=kln(x1)+csubstitutethepoint(2,5)&(9,8){(2,5)ln(3)=k.ln(1)+c,c=ln(3)(9,8)ln(6)=k.ln(8)+ln(3)k=13thereforeln(y2)=13ln(x1)+ln(3)y2=3.x13.
Commented by bemath last updated on 14/Aug/20
tq mr bob
tqmrbob

Leave a Reply

Your email address will not be published. Required fields are marked *