Menu Close

Question-108133




Question Number 108133 by ajfour last updated on 14/Aug/20
Commented by ajfour last updated on 14/Aug/20
Rod AB inside a smooth sphere  of radius R, Find Normal  reactions at A and B.
RodABinsideasmoothsphereofradiusR,FindNormalreactionsatAandB.
Answered by mr W last updated on 15/Aug/20
Commented by mr W last updated on 15/Aug/20
let λ=(m/M)  AC=((M×((a+b)/2)+m×a)/(M+m))=(((1+2λ)a+b)/(2(1+λ)))  CB=((a+(1+2λ)b)/(2(1+λ)))  cos γ=((a+b)/(2R))  ⇒γ=cos^(−1) {((a+b)/(2R))}  ((sin (α+γ))/(sin α))=((AO)/(AC))=((2(1+λ)R)/((1+2λ)a+b))  cos γ+((sin γ)/(tan α))=((2(1+λ)R)/((1+2λ)a+b))  ⇒α=tan^(−1) {((√(1−(((a+b)/(2R)))^2 ))/(((2(1+λ)R)/((1+2λ)a+b))−((a+b)/(2R))))}  ⇒β=tan^(−1) {((√(1−(((a+b)/(2R)))^2 ))/(((2(1+λ)R)/(a+(1+2λ)b))−((a+b)/(2R))))}  (N_1 /(sin β))=(((M+m)g)/(sin 2γ))  ⇒N_1 =((sin β (M+m)g)/(sin 2γ))  ⇒N_2 =((sin α (M+m)g)/(sin 2γ))
letλ=mMAC=M×a+b2+m×aM+m=(1+2λ)a+b2(1+λ)CB=a+(1+2λ)b2(1+λ)cosγ=a+b2Rγ=cos1{a+b2R}sin(α+γ)sinα=AOAC=2(1+λ)R(1+2λ)a+bcosγ+sinγtanα=2(1+λ)R(1+2λ)a+bα=tan1{1(a+b2R)22(1+λ)R(1+2λ)a+ba+b2R}β=tan1{1(a+b2R)22(1+λ)Ra+(1+2λ)ba+b2R}N1sinβ=(M+m)gsin2γN1=sinβ(M+m)gsin2γN2=sinα(M+m)gsin2γ
Commented by ajfour last updated on 15/Aug/20
So quick, and superb solution,  thanks a lot Sir.
Soquick,andsuperbsolution,thanksalotSir.
Commented by otchereabdullai@gmail.com last updated on 15/Aug/20
The world mathematician/ physicist  I always become very happy when i see  your solution to a question
Theworldmathematician/physicistIalwaysbecomeveryhappywheniseeyoursolutiontoaquestion
Answered by ajfour last updated on 15/Aug/20
Commented by ajfour last updated on 15/Aug/20
Ncos (α+θ)=Fcos (α−θ)    ...(i)  p=(√(R^2 −(((a+b)/2))^2 ))  cos α=((a+b)/(2R))  Nsin (α+θ)+Fsin (α−θ)=(M+m)g             ......(ii)  Torque balance about centre of sphere  mg(((b−a)/2)−ptan θ)cos θ=Mg(psin θ)  ⇒   tan θ=((m(b−a))/(2p(M+m)))  Now  using (i) in  (ii)     N{sin (α+θ)+sin (α−θ)((cos (α+θ))/(cos (α−θ)))}              = (M+m)g  ⇒  N=(((M+m)gcos (α−θ))/(sin 2α))    &          F=(((M+m)gcos (α+θ))/(sin 2α))   ■
Ncos(α+θ)=Fcos(αθ)(i)p=R2(a+b2)2cosα=a+b2RNsin(α+θ)+Fsin(αθ)=(M+m)g(ii)Torquebalanceaboutcentreofspheremg(ba2ptanθ)cosθ=Mg(psinθ)tanθ=m(ba)2p(M+m)Nowusing(i)in(ii)N{sin(α+θ)+sin(αθ)cos(α+θ)cos(αθ)}=(M+m)gN=(M+m)gcos(αθ)sin2α&F=(M+m)gcos(α+θ)sin2α◼
Commented by mr W last updated on 15/Aug/20
perfect solution!
perfectsolution!

Leave a Reply

Your email address will not be published. Required fields are marked *