Question Number 108240 by mathdave last updated on 15/Aug/20
Answered by john santu last updated on 15/Aug/20
$$\:\:\:\:\frac{\Box{JS}\bigtriangleup}{\bigstar} \\ $$$$\mathrm{2}^{{a}+\mathrm{4}} \:=\:\mathrm{6}\:\Rightarrow\mathrm{2}^{{a}+\mathrm{4}} \:=\:\mathrm{2}.\mathrm{3} \\ $$$$\Rightarrow\mathrm{2}^{{a}+\mathrm{3}} \:=\:\mathrm{3}\:…\left({i}\right) \\ $$$$\mathrm{3}^{\mathrm{2}{b}+\mathrm{1}} \:=\:\mathrm{3}.\mathrm{2}^{\mathrm{2}} \Rightarrow\mathrm{3}^{\mathrm{2}{b}} \:=\:\mathrm{2}^{\mathrm{2}} ;\:\mathrm{3}^{{b}} =\mathrm{2} \\ $$$${then}\:\left(\mathrm{2}^{{a}+\mathrm{3}} \right)^{\mathrm{2}{b}} \:=\:\mathrm{2}^{\mathrm{2}} \\ $$$$\mathrm{2}^{\mathrm{2}{ab}+\mathrm{6}{b}} \:=\:\mathrm{2}^{\mathrm{2}} \Rightarrow{ab}+\mathrm{3}{b}\:=\:\mathrm{1}\: \\ $$$$\Rightarrow{ab}−\mathrm{1}\:=\:−\mathrm{3}{b}\:;\:{ab}−\mathrm{2}=−\mathrm{3}{b}−\mathrm{1} \\ $$$${we}\:{obtain}\:\mathrm{3}^{{ab}−\mathrm{2}} \:=\:\mathrm{3}^{−\mathrm{3}{b}−\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{3}^{{b}} \right)^{\mathrm{3}} ×\mathrm{3}} \\ $$$$\mathrm{3}^{{ab}−\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{24}}\:. \\ $$
Answered by 1549442205PVT last updated on 16/Aug/20
$$\mathrm{2}^{\mathrm{a}+\mathrm{4}} =\mathrm{6}\Rightarrow\left(\mathrm{a}+\mathrm{4}\right)\mathrm{ln2}=\mathrm{ln}\left(\mathrm{2}.\mathrm{3}\right)=\mathrm{ln2}+\mathrm{ln3} \\ $$$$\Rightarrow\mathrm{aln2}=\mathrm{ln3}−\mathrm{3ln2}=\mathrm{ln}\frac{\mathrm{3}}{\mathrm{8}}\Rightarrow\mathrm{a}=\frac{\mathrm{ln}\frac{\mathrm{3}}{\mathrm{8}}}{\mathrm{ln2}}\left(\mathrm{1}\right) \\ $$$$\mathrm{3}^{\mathrm{2b}+\mathrm{1}} =\mathrm{12}\Rightarrow\left(\mathrm{2b}+\mathrm{1}\right)\mathrm{ln3}=\mathrm{ln}\left(\mathrm{3}.\mathrm{4}\right)\Leftrightarrow \\ $$$$\mathrm{2bln3}+\mathrm{ln3}=\mathrm{ln3}+\mathrm{ln4}\Rightarrow\mathrm{2bln3}=\mathrm{ln4} \\ $$$$\Rightarrow\mathrm{b}=\frac{\mathrm{ln4}}{\mathrm{2ln3}}=\frac{\mathrm{2ln2}}{\mathrm{2ln3}}=\frac{\mathrm{ln2}}{\mathrm{ln3}}\left(\mathrm{2}\right) \\ $$$$\mathrm{From}\left(\mathrm{1}\right)\left(\mathrm{2}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{ab}=\frac{\mathrm{ln}\frac{\mathrm{3}}{\mathrm{8}}}{\mathrm{ln2}}×\frac{\mathrm{ln2}}{\mathrm{ln3}} \\ $$$$=\frac{\mathrm{ln}\frac{\mathrm{3}}{\mathrm{8}}}{\mathrm{ln3}}=\mathrm{log}_{\mathrm{3}} \frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{ab}−\mathrm{2}=\mathrm{log}_{\mathrm{3}} \frac{\mathrm{3}}{\mathrm{8}}−\mathrm{2}=\mathrm{log}_{\mathrm{3}} \frac{\mathrm{3}}{\mathrm{8}}−\mathrm{log}_{\mathrm{3}} \mathrm{3}^{\mathrm{2}} \\ $$$$=\mathrm{log}_{\mathrm{3}} \left(\frac{\mathrm{3}}{\mathrm{8}}/\mathrm{9}\right)=\mathrm{log}_{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{24}}\right).\mathrm{Therefore} \\ $$$$\mathrm{3}^{\mathrm{ab}−\mathrm{2}} =\mathrm{3}^{\mathrm{log}_{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{24}}\right)} =\frac{\mathrm{1}}{\mathrm{24}}\left(\mathrm{since}\:\mathrm{a}^{\mathrm{log}_{\mathrm{a}} \mathrm{N}} =\mathrm{N}\right) \\ $$$$\mathrm{Consequently}\:\mathrm{we}\:\mathrm{choose}\:\mathrm{C} \\ $$