Menu Close

Question-108365




Question Number 108365 by mathdave last updated on 16/Aug/20
Answered by JDamian last updated on 16/Aug/20
S =Σ_(n=1) ^(2019) ((1+2+3+ ∙∙∙ + n)/(1^3 +2^3 +3^3 + ∙∙∙ +2019^3 )) =  =((Σ_(n=1) ^(2019) (1+2+ ∙∙∙ +n))/(1^3 +2^3 +3^3 + ∙∙∙ +2019^3 ))   1+2+ ∙∙∙ +n = ((n(n+1))/2)  1^3 +2^3 + ∙∙∙ +2019^3  = (((2019∙2020)/2))^2   S= ((2/(2019∙2020)))^2 ∙ (1/2)(Σ_(n=1) ^(2019) n^2  + Σ_(n=1) ^(2019) n)  Σ_(n=1) ^(2019) n = ((2019∙2020)/2)  Σ_(n=1) ^(2019) n^2  = ((2019∙2020∙4039)/6)  S =  (1/(2019∙2020)) ∙ (1+((4039)/3))
$${S}\:=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+\:\centerdot\centerdot\centerdot\:+\:{n}}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +\:\centerdot\centerdot\centerdot\:+\mathrm{2019}^{\mathrm{3}} }\:= \\ $$$$=\frac{\underset{{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}\left(\mathrm{1}+\mathrm{2}+\:\centerdot\centerdot\centerdot\:+{n}\right)}{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +\:\centerdot\centerdot\centerdot\:+\mathrm{2019}^{\mathrm{3}} }\: \\ $$$$\mathrm{1}+\mathrm{2}+\:\centerdot\centerdot\centerdot\:+{n}\:=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\:\centerdot\centerdot\centerdot\:+\mathrm{2019}^{\mathrm{3}} \:=\:\left(\frac{\mathrm{2019}\centerdot\mathrm{2020}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${S}=\:\left(\frac{\mathrm{2}}{\mathrm{2019}\centerdot\mathrm{2020}}\right)^{\mathrm{2}} \centerdot\:\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}{n}^{\mathrm{2}} \:+\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}{n}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}{n}\:=\:\frac{\mathrm{2019}\centerdot\mathrm{2020}}{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}{n}^{\mathrm{2}} \:=\:\frac{\mathrm{2019}\centerdot\mathrm{2020}\centerdot\mathrm{4039}}{\mathrm{6}} \\ $$$${S}\:=\:\:\frac{\mathrm{1}}{\mathrm{2019}\centerdot\mathrm{2020}}\:\centerdot\:\left(\mathrm{1}+\frac{\mathrm{4039}}{\mathrm{3}}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *