Menu Close

Question-108588




Question Number 108588 by ajfour last updated on 17/Aug/20
Commented by ajfour last updated on 21/Aug/20
There is no friction between block  and sphere, but enough friction  between ground and sphere, such  that sphere rolls as block slides  backwards. Find maximum  velocity acquired by sphere (hollow).
Thereisnofrictionbetweenblockandsphere,butenoughfrictionbetweengroundandsphere,suchthatsphererollsasblockslidesbackwards.Findmaximumvelocityacquiredbysphere(hollow).
Answered by ajfour last updated on 21/Aug/20
Commented by ajfour last updated on 21/Aug/20
(Nsin θ)R(1+cos θ)=Iα   ...(i)  A=αR  mgcos θ−N−mαRsin θ=((mv^2 )/R)  ..(ii)  mgsin θ+mαRcos θ=((mvdv)/(Rdθ))   ...(iii)  (v/R)=(dθ/dt)   ...(iv)  ⇒     mgsin θ−((Iα)/(Rsin θ(1+cos θ)))    −mαRsin θ=mR((dθ/dt))^2   from (iii)     Rα=(1/(cos θ))(((vdv)/(Rdθ))−gsin θ)     and  let  (I/(mR^2 ))=k    , then  gsin θ−((k/(sin θ(1+cos θ)))+sin θ)αR         =R((dθ/dt))^2     ⇒  (d^2 θ/dt^2 )−((g/R))sin θ=(([((g/R))sin θ−((dθ/dt))^2 ]cos θ)/(sin θ+(k/(sin θ(1+cos θ)))))  ......................................................
(Nsinθ)R(1+cosθ)=Iα(i)A=αRmgcosθNmαRsinθ=mv2R..(ii)mgsinθ+mαRcosθ=mvdvRdθ(iii)vR=dθdt(iv)mgsinθIαRsinθ(1+cosθ)mαRsinθ=mR(dθdt)2from(iii)Rα=1cosθ(vdvRdθgsinθ)andletImR2=k,thengsinθ(ksinθ(1+cosθ)+sinθ)αR=R(dθdt)2d2θdt2(gR)sinθ=[(gR)sinθ(dθdt)2]cosθsinθ+ksinθ(1+cosθ)
Answered by mr W last updated on 22/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *