Menu Close

Question-109067




Question Number 109067 by n0y0n last updated on 20/Aug/20
Answered by Aziztisffola last updated on 20/Aug/20
 sin(x)ln(cot^2 (x))=sin(x)ln(((cos^2 (x))/(sin^2 (x))))   =sin(x)(ln(cos^2 (x))−sin(x)ln(sin^2 (x))   { ((lim_(x→0)  sin(x)(ln(cos^2 (x))=0)),((lim_(x→0)  sin(x)ln(sin^2 (x))=lim_(x→0) 2sin(x)ln(sin(x))=0)) :}   lim_(x→0)  sin(x)ln(cot^2 (x))=0
$$\:\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{cot}^{\mathrm{2}} \left(\mathrm{x}\right)\right)=\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\frac{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}\right) \\ $$$$\:=\mathrm{sin}\left(\mathrm{x}\right)\left(\mathrm{ln}\left(\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\right)−\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\right)\right. \\ $$$$\begin{cases}{\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{sin}\left(\mathrm{x}\right)\left(\mathrm{ln}\left(\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\right)=\mathrm{0}\right.}\\{\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}2sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)=\mathrm{0}}\end{cases} \\ $$$$\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{cot}^{\mathrm{2}} \left(\mathrm{x}\right)\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *