Menu Close

Question-109336




Question Number 109336 by Rasikh last updated on 22/Aug/20
Commented by Ari last updated on 22/Aug/20
x=2
Commented by Ari last updated on 22/Aug/20
x=4
Commented by mr W last updated on 22/Aug/20
and x≈−0.7667
$${and}\:{x}\approx−\mathrm{0}.\mathrm{7667} \\ $$
Answered by Dwaipayan Shikari last updated on 22/Aug/20
2^x =x^2   xlog2=2logx  e^(logx) =((2logx)/(log2))  e^(−logx) =((log2)/(2logx))  −logxe^(−logx) =−((log2)/2)  −logx=W_0 (−((log2)/2))  x=e^(−W_0 (((−log2)/2)))    { ((x=2,4)),((x=e^(−W_0 (−((log2)/2))) )) :}
$$\mathrm{2}^{{x}} ={x}^{\mathrm{2}} \\ $$$${xlog}\mathrm{2}=\mathrm{2}{logx} \\ $$$${e}^{{logx}} =\frac{\mathrm{2}{logx}}{{log}\mathrm{2}} \\ $$$${e}^{−{logx}} =\frac{{log}\mathrm{2}}{\mathrm{2}{logx}} \\ $$$$−{logxe}^{−{logx}} =−\frac{{log}\mathrm{2}}{\mathrm{2}} \\ $$$$−{logx}={W}_{\mathrm{0}} \left(−\frac{{log}\mathrm{2}}{\mathrm{2}}\right) \\ $$$${x}={e}^{−{W}_{\mathrm{0}} \left(\frac{−{log}\mathrm{2}}{\mathrm{2}}\right)} \\ $$$$\begin{cases}{{x}=\mathrm{2},\mathrm{4}}\\{{x}={e}^{−{W}_{\mathrm{0}} \left(−\frac{{log}\mathrm{2}}{\mathrm{2}}\right)} }\end{cases} \\ $$$$ \\ $$
Commented by mr W last updated on 22/Aug/20
in 2^x =x^2  the x can be negative, but in  x log 2=2 log x the x must be positive.  it means some roots may get lost in   your solution x=e^(−W_0 (((−log 2)/2))) . in fact  you get only two roots: x=2, 4. the  “others”you mean are  not included in  your solution x=e^(−W_0 (((−log 2)/2))) . in think  the complete solution should be  x=∓e^(−W_0 (±((log 2)/2))) . please check!
$${in}\:\mathrm{2}^{{x}} ={x}^{\mathrm{2}} \:{the}\:{x}\:{can}\:{be}\:{negative},\:{but}\:{in} \\ $$$${x}\:\mathrm{log}\:\mathrm{2}=\mathrm{2}\:\mathrm{log}\:{x}\:{the}\:{x}\:{must}\:{be}\:{positive}. \\ $$$${it}\:{means}\:{some}\:{roots}\:{may}\:{get}\:{lost}\:{in}\: \\ $$$${your}\:{solution}\:{x}={e}^{−{W}_{\mathrm{0}} \left(\frac{−\mathrm{log}\:\mathrm{2}}{\mathrm{2}}\right)} .\:{in}\:{fact} \\ $$$${you}\:{get}\:{only}\:{two}\:{roots}:\:{x}=\mathrm{2},\:\mathrm{4}.\:{the} \\ $$$$“{others}''{you}\:{mean}\:{are}\:\:{not}\:{included}\:{in} \\ $$$${your}\:{solution}\:{x}={e}^{−{W}_{\mathrm{0}} \left(\frac{−\mathrm{log}\:\mathrm{2}}{\mathrm{2}}\right)} .\:{in}\:{think} \\ $$$${the}\:{complete}\:{solution}\:{should}\:{be} \\ $$$${x}=\mp{e}^{−{W}_{\mathrm{0}} \left(\pm\frac{\mathrm{log}\:\mathrm{2}}{\mathrm{2}}\right)} .\:{please}\:{check}! \\ $$
Commented by Dwaipayan Shikari last updated on 22/Aug/20
2^x =x^2   2^(x/2) =±x
$$\mathrm{2}^{\mathrm{x}} =\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{2}^{\frac{\mathrm{x}}{\mathrm{2}}} =\pm\mathrm{x} \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 22/Aug/20
yes!
$${yes}! \\ $$
Commented by Rasikh last updated on 22/Aug/20
thanks
$$\mathrm{thanks} \\ $$
Commented by Rasikh last updated on 22/Aug/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *