Question Number 109729 by lazygorilla last updated on 25/Aug/20
Answered by prakash jain last updated on 25/Aug/20
$$\mathrm{1}+{x}+{x}^{\mathrm{2}} +..+{x}^{{n}−\mathrm{1}} =\frac{\left({x}^{{n}} −\mathrm{1}\right)}{{x}−\mathrm{1}}\:\:\:\left({x}\neq\mathrm{1}\right) \\ $$$$\:\:\:\:\left(\mathrm{Geometric}\:\mathrm{Progression}\right) \\ $$$$\mathrm{2}^{\mathrm{0}} +\mathrm{2}^{\mathrm{1}} +…+\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{2}^{{m}} −\mathrm{1} \\ $$$$\mathrm{substitute}\:\mathrm{this}\:\mathrm{and}\:\mathrm{you}\:\mathrm{will}\:\mathrm{get}\:\mathrm{the} \\ $$$$\mathrm{result} \\ $$
Answered by bobhans last updated on 25/Aug/20
$${consider}\:{GP}\::\:\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+…+\mathrm{2}^{{m}−\mathrm{1}} \:=\:\frac{\mathrm{1}\left(\mathrm{2}^{{m}} −\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}} \\ $$$$=\:\mathrm{2}^{{m}} −\mathrm{1}\: \\ $$
Answered by 1549442205PVT last updated on 25/Aug/20
$$\mathrm{2}^{\mathrm{0}} +\mathrm{2}^{\mathrm{1}} +\mathrm{2}^{\mathrm{2}} +….+\mathrm{2}^{\mathrm{m}−\mathrm{1}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{m}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{geometric}\:\mathrm{progress}\:\mathrm{with} \\ $$$$\mathrm{first}\:\mathrm{term}\:\mathrm{be}\:\mathrm{u}_{\mathrm{1}} =\mathrm{2}^{\mathrm{0}} =\mathrm{1},\mathrm{q}=\mathrm{2},\mathrm{so} \\ $$$$\mathrm{S}=\mathrm{u}_{\mathrm{1}} \frac{\mathrm{q}^{\mathrm{m}} −\mathrm{1}}{\mathrm{q}−\mathrm{1}}=\mathrm{1}.\frac{\mathrm{2}^{\mathrm{m}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}}=\mathrm{2}^{\mathrm{m}} −\mathrm{1} \\ $$