Question Number 109749 by mathdave last updated on 25/Aug/20
Answered by 1549442205PVT last updated on 26/Aug/20
$$\mathrm{By}\:\mathrm{obtained}\:\mathrm{result}\:\mathrm{above}\:\mathrm{we}\:\mathrm{have} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{324}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}\mathrm{dx}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\mathrm{12}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{6}\left(\mathrm{x}+\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}−\frac{\mathrm{6}\left(\mathrm{x}−\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}}\right)\mathrm{dx} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{12}}{\mathrm{x}^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\:\sqrt{\mathrm{3}}}\right)_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{12}}{\:\sqrt{\mathrm{3}}}×\frac{\pi}{\mathrm{6}}=\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{6}\left(\mathrm{x}+\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}\mathrm{dx}=\mathrm{3}\int\frac{\mathrm{2x}+\mathrm{3}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}\mathrm{dx}+\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{3}}{\left(\mathrm{x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\mathrm{3ln}\mid\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}\mid_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{3}\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{3}}{\:\sqrt{\mathrm{3}\:}}\right)_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\mathrm{3ln7}−\mathrm{3ln3}+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\right)−\frac{\mathrm{2}\sqrt{\mathrm{3}}\pi}{\mathrm{3}}\:\left(\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{6}\left(\mathrm{x}−\mathrm{2}\right)\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}}=\mathrm{3}\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{2x}−\mathrm{3}}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}}\mathrm{dx}−\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{3}}{\left(\mathrm{x}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\mathrm{3ln}\mid\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}\mid_{\mathrm{0}} ^{\mathrm{1}} −\left[\mathrm{3}.\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2x}−\mathrm{3}}{\:\sqrt{\mathrm{3}}}\right)\right] \\ $$$$=−\mathrm{3ln3}−\mathrm{2}\sqrt{\mathrm{3}}\:\left[\left(\frac{−\pi}{\mathrm{6}}\right)+\frac{\pi}{\mathrm{3}}\right]\left(\mathrm{3}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{1}\right)\left(\mathrm{2}\right)\left(\mathrm{3}\right)\mathrm{we}\:\mathrm{obtain}: \\ $$$$\mathrm{I}=\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{3}}+\mathrm{3ln7}−\mathrm{3ln3}+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{an}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\right)−\frac{\mathrm{2}\sqrt{\mathrm{3}}\pi}{\mathrm{3}} \\ $$$$−\left\{−\mathrm{3ln3}−\mathrm{2}\sqrt{\mathrm{3}}\:\left[\left(\frac{−\pi}{\mathrm{6}}\right)+\frac{\pi}{\mathrm{3}}\right]\right\} \\ $$$$=\mathrm{3ln7}+\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$$\boldsymbol{\mathrm{This}}\:\boldsymbol{\mathrm{result}}\:\boldsymbol{\mathrm{looks}}\:\boldsymbol{\mathrm{different}}\:\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{question}}\:\boldsymbol{\mathrm{but}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{fact}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{same}} \\ $$$$.\boldsymbol{\mathrm{Please}},\boldsymbol{\mathrm{friends}}\:\boldsymbol{\mathrm{try}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{check}}\:!\boldsymbol{\mathrm{Prove}}\:\: \\ $$$$\boldsymbol{\mathrm{that}}\:\frac{\boldsymbol{\pi}}{\:\sqrt{\mathrm{3}}}+\sqrt{\mathrm{3}}\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \left(\mathrm{4}\sqrt{\mathrm{3}}\right)=\mathrm{2}\sqrt{\mathrm{3}}\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\right) \\ $$