Menu Close

Question-109750




Question Number 109750 by mathdave last updated on 25/Aug/20
Answered by 1549442205PVT last updated on 28/Aug/20
x^6 +27=(x^2 )^3 +3^3 =(x^2 +3)(x^4 −3x^2 +9)  =(x^2 +3)([(x^2 +3)^2 −9x^2 ]  =(x^2 +3)(x^2 +3x+3)(x^2 −3x+3)  (1/(x^6 +27))=((ax+b)/(x^2 +3))+((cx+d)/(x^2 +3x+3))+((ex+f)/(x^2 −3x+3))  ⇔(1/(x^6 +27))=((ax^5 +bx^4 −3ax^3 −3bx^2 +9ax+9b)/(x^6 +27))  +((cx^5 +(d−3c)x^4 +(6c−3d)x^3 +(6d−9c)x^2 +(9c−9d)x+9d)/(x^6 +27))  +((ex^5 +(3e+f)x^4 +(3f+6e)x^3 +(9e+6f)x^2 +(9e+9f)x+9f)/(x^6 +27))  =(((a+c+e)x^5 +(b+d−3c+3e+f)x^4 +(−3a+6c−3d+6e+3f)x^3 +(−3b+9e+6f+6d−9c)x^2 +(9a+9c−9d+9e+9f)x+9b+9d+9f)/(x^6 +27))  ⇔ { ((a+c+e=0)),((b+d−3c=0)),((−3a+6c−3d+6e+3f=0)),((−3b−9c+6d+9e+6f=0)),((9a+9c−9d+9e+9f=0)),((9b+9d+9f=1)) :}  (∗)  We get the matrix of the system of six  linear equations of degree 1 w.r.t six unknown  a,b,c,d,e,f as   [(1,0,1,0,1,0,0),(0,1,(−3),1,3,1,0),((−3),0,6,(−3),6,3,0),(0,(−3),(−9),6,9,6,0),(9,0,9,(−9),9,9,0),(0,9,0,9,0,9,1) ]  Solve above system by using  variable   substitution, algebraic addition (or  equivalent   tranformation for matrixes) we get  a=0,b=(1/(27)),c=(1/(18)),d=(4/(27)),f=((−2)/(27)),e=(1/(54))  (1/(x^6 +27))=(1/(27(x^2 +3)))+((x+2)/(54(x^2 +3x+3)))−((x−2)/(54(x^2 −3x+3)))  Hence  ((324)/(x^3 +27))=((12)/((x^2 +3)))+((6(x+2))/(x^2 +3x+3))−((6(x−2))/(x^2 −3x+3))
$$\mathrm{x}^{\mathrm{6}} +\mathrm{27}=\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} =\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{4}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{9}\right) \\ $$$$=\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\left[\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} −\mathrm{9x}^{\mathrm{2}} \right]\right. \\ $$$$=\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}+\frac{\mathrm{cx}+\mathrm{d}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}+\frac{\mathrm{ex}+\mathrm{f}}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{ax}^{\mathrm{5}} +\mathrm{bx}^{\mathrm{4}} −\mathrm{3ax}^{\mathrm{3}} −\mathrm{3bx}^{\mathrm{2}} +\mathrm{9ax}+\mathrm{9b}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$+\frac{\mathrm{cx}^{\mathrm{5}} +\left(\mathrm{d}−\mathrm{3c}\right)\mathrm{x}^{\mathrm{4}} +\left(\mathrm{6c}−\mathrm{3d}\right)\mathrm{x}^{\mathrm{3}} +\left(\mathrm{6d}−\mathrm{9c}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{9c}−\mathrm{9d}\right)\mathrm{x}+\mathrm{9d}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$+\frac{\mathrm{ex}^{\mathrm{5}} +\left(\mathrm{3e}+\mathrm{f}\right)\mathrm{x}^{\mathrm{4}} +\left(\mathrm{3f}+\mathrm{6e}\right)\mathrm{x}^{\mathrm{3}} +\left(\mathrm{9e}+\mathrm{6f}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{9e}+\mathrm{9f}\right)\mathrm{x}+\mathrm{9f}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$=\frac{\left(\mathrm{a}+\mathrm{c}+\mathrm{e}\right)\mathrm{x}^{\mathrm{5}} +\left(\mathrm{b}+\mathrm{d}−\mathrm{3c}+\mathrm{3e}+\mathrm{f}\right)\mathrm{x}^{\mathrm{4}} +\left(−\mathrm{3a}+\mathrm{6c}−\mathrm{3d}+\mathrm{6e}+\mathrm{3f}\right)\mathrm{x}^{\mathrm{3}} +\left(−\mathrm{3b}+\mathrm{9e}+\mathrm{6f}+\mathrm{6d}−\mathrm{9c}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{9a}+\mathrm{9c}−\mathrm{9d}+\mathrm{9e}+\mathrm{9f}\right)\mathrm{x}+\mathrm{9b}+\mathrm{9d}+\mathrm{9f}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{a}+\mathrm{c}+\mathrm{e}=\mathrm{0}}\\{\mathrm{b}+\mathrm{d}−\mathrm{3c}=\mathrm{0}}\\{−\mathrm{3a}+\mathrm{6c}−\mathrm{3d}+\mathrm{6e}+\mathrm{3f}=\mathrm{0}}\\{−\mathrm{3b}−\mathrm{9c}+\mathrm{6d}+\mathrm{9e}+\mathrm{6f}=\mathrm{0}}\\{\mathrm{9a}+\mathrm{9c}−\mathrm{9d}+\mathrm{9e}+\mathrm{9f}=\mathrm{0}}\\{\mathrm{9b}+\mathrm{9d}+\mathrm{9f}=\mathrm{1}}\end{cases}\:\:\left(\ast\right) \\ $$$$\mathrm{We}\:\mathrm{get}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{six} \\ $$$$\mathrm{linear}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{1}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\mathrm{six}\:\mathrm{unknown} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:\mathrm{as} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{−\mathrm{3}}&{\mathrm{1}}&{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}\\{−\mathrm{3}}&{\mathrm{0}}&{\mathrm{6}}&{−\mathrm{3}}&{\mathrm{6}}&{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{3}}&{−\mathrm{9}}&{\mathrm{6}}&{\mathrm{9}}&{\mathrm{6}}&{\mathrm{0}}\\{\mathrm{9}}&{\mathrm{0}}&{\mathrm{9}}&{−\mathrm{9}}&{\mathrm{9}}&{\mathrm{9}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{9}}&{\mathrm{0}}&{\mathrm{9}}&{\mathrm{0}}&{\mathrm{9}}&{\mathrm{1}}\end{bmatrix} \\ $$$$\mathrm{Solve}\:\mathrm{above}\:\mathrm{system}\:\mathrm{by}\:\mathrm{using}\:\:\mathrm{variable}\: \\ $$$$\mathrm{substitution},\:\mathrm{algebraic}\:\mathrm{addition}\:\left(\mathrm{or}\:\:\mathrm{equivalent}\:\right. \\ $$$$\left.\mathrm{tranformation}\:\mathrm{for}\:\mathrm{matrixes}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{a}=\mathrm{0},\mathrm{b}=\frac{\mathrm{1}}{\mathrm{27}},\mathrm{c}=\frac{\mathrm{1}}{\mathrm{18}},\mathrm{d}=\frac{\mathrm{4}}{\mathrm{27}},\mathrm{f}=\frac{−\mathrm{2}}{\mathrm{27}},\mathrm{e}=\frac{\mathrm{1}}{\mathrm{54}} \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{1}}{\mathrm{27}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{x}+\mathrm{2}}{\mathrm{54}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}\right)}−\frac{\mathrm{x}−\mathrm{2}}{\mathrm{54}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}\right)} \\ $$$$\mathrm{Hence} \\ $$$$\frac{\mathrm{324}}{\mathrm{x}^{\mathrm{3}} +\mathrm{27}}=\frac{\mathrm{12}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{6}\left(\mathrm{x}+\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}−\frac{\mathrm{6}\left(\mathrm{x}−\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}} \\ $$
Commented by mathdave last updated on 25/Aug/20
thanks this was wonderfully done by a great man  .you have tried .u should have throw more light  on how you came about letters from d matrix box  for people that are not pro like you .hw did you  get those letters
$${thanks}\:{this}\:{was}\:{wonderfully}\:{done}\:{by}\:{a}\:{great}\:{man} \\ $$$$.{you}\:{have}\:{tried}\:.{u}\:{should}\:{have}\:{throw}\:{more}\:{light} \\ $$$${on}\:{how}\:{you}\:{came}\:{about}\:{letters}\:{from}\:{d}\:{matrix}\:{box} \\ $$$${for}\:{people}\:{that}\:{are}\:{not}\:{pro}\:{like}\:{you}\:.{hw}\:{did}\:{you} \\ $$$${get}\:{those}\:{letters}\: \\ $$
Commented by 1549442205PVT last updated on 26/Aug/20
I used indefined −coefficient method  which stated that:  “two the polynomials are equal ∀x  if  and only if the their corresponding   coefficients are equal ”  The system (∗)can be solved by many  different ways:can use variable  substituting ,algebraic plus,transform  ation equivalent matrix...
$$\mathrm{I}\:\mathrm{used}\:\mathrm{indefined}\:−\mathrm{coefficient}\:\mathrm{method} \\ $$$$\mathrm{which}\:\mathrm{stated}\:\mathrm{that}: \\ $$$$“\mathrm{two}\:\mathrm{the}\:\mathrm{polynomials}\:\mathrm{are}\:\mathrm{equal}\:\forall\mathrm{x}\:\:\mathrm{if} \\ $$$$\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{the}\:\mathrm{their}\:\mathrm{corresponding}\: \\ $$$$\mathrm{coefficients}\:\mathrm{are}\:\mathrm{equal}\:'' \\ $$$$\mathrm{The}\:\mathrm{system}\:\left(\ast\right)\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{by}\:\mathrm{many} \\ $$$$\mathrm{different}\:\mathrm{ways}:\mathrm{can}\:\mathrm{use}\:\mathrm{variable} \\ $$$$\mathrm{substituting}\:,\mathrm{algebraic}\:\mathrm{plus},\mathrm{transform} \\ $$$$\mathrm{ation}\:\mathrm{equivalent}\:\mathrm{matrix}… \\ $$
Answered by Her_Majesty last updated on 25/Aug/20
wrong  ((324)/(x^6 +27))=((324)/((x^2 +3)(x^2 +3x+3)(x^2 −3x+3)))=  =((12)/(x^2 +3))+((6(x+2))/(x^2 +3x+3))−((6(x−2))/(x^2 −3x+3))  now it′s easy to solve the integral by using the  common known formula
$${wrong} \\ $$$$\frac{\mathrm{324}}{{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{324}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{3}\right)}= \\ $$$$=\frac{\mathrm{12}}{{x}^{\mathrm{2}} +\mathrm{3}}+\frac{\mathrm{6}\left({x}+\mathrm{2}\right)}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}}−\frac{\mathrm{6}\left({x}−\mathrm{2}\right)}{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{3}} \\ $$$${now}\:{it}'{s}\:{easy}\:{to}\:{solve}\:{the}\:{integral}\:{by}\:{using}\:{the} \\ $$$${common}\:{known}\:{formula} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *