Menu Close

Question-109760




Question Number 109760 by ajfour last updated on 25/Aug/20
Commented by ajfour last updated on 25/Aug/20
Find u in terms of l, b, g such that  bob hits hanging block.
$${Find}\:{u}\:{in}\:{terms}\:{of}\:{l},\:{b},\:{g}\:{such}\:{that} \\ $$$${bob}\:{hits}\:{hanging}\:{block}. \\ $$$$ \\ $$
Answered by mr W last updated on 25/Aug/20
Commented by mr W last updated on 27/Aug/20
(1/2)mv^2 +mgl(1+sin θ)=(1/2)mu^2   ⇒v^2 =u^2 −2gl(1+sin θ)  mg sin θ=((mv^2 )/l)  ⇒u^2 =gl(2+3 sin θ)  ⇒v^2 =gl sin θ  R=l cos θ  h=l(1−sin θ)−b  t=(R/(v cos ϕ))=(l/(v tan θ))  h=v sin ϕ (l/(v tan θ))−(1/2)g ((l/(v tan θ)))^2   l(1−sin θ)−b=((l cos θ)/(tan θ))−((gl^2 )/(2v^2 tan^2  θ))  ((gl^2 )/(2v^2 tan^2  θ))=b+l((1/(sin  θ))−1)  v^2 =((gl^2 )/(2 tan^2  θ [b+l(((1−sin θ)/(sin θ)))]))  gl sin θ=((gl^2 )/(2 tan^2  θ [b+l(((1−sin θ)/(sin θ)))]))  sin θ=(1/(2 tan^2  θ ((b/l)−1+(1/(sin θ)))))  2 sin^3  θ ((b/l)−1+(1/(sin θ)))=1−sin^2  θ  ⇒2(1−(b/l))sin^3  θ−3 sin^2  θ+1=0  ⇒(1/(sin θ))=2 sin [(1/3) sin^(−1) (1−(b/l))+((2π)/3)]  ⇒u=(√({2+(3/(2 sin [(1/3) sin^(−1) (1−(b/l))+((2π)/3)]))}gl))
$$\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +{mgl}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}{mu}^{\mathrm{2}} \\ $$$$\Rightarrow{v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}{gl}\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$${mg}\:\mathrm{sin}\:\theta=\frac{{mv}^{\mathrm{2}} }{{l}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} ={gl}\left(\mathrm{2}+\mathrm{3}\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{v}^{\mathrm{2}} ={gl}\:\mathrm{sin}\:\theta \\ $$$${R}={l}\:\mathrm{cos}\:\theta \\ $$$${h}={l}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)−{b} \\ $$$${t}=\frac{{R}}{{v}\:\mathrm{cos}\:\varphi}=\frac{{l}}{{v}\:\mathrm{tan}\:\theta} \\ $$$${h}={v}\:\mathrm{sin}\:\varphi\:\frac{{l}}{{v}\:\mathrm{tan}\:\theta}−\frac{\mathrm{1}}{\mathrm{2}}{g}\:\left(\frac{{l}}{{v}\:\mathrm{tan}\:\theta}\right)^{\mathrm{2}} \\ $$$${l}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)−{b}=\frac{{l}\:\mathrm{cos}\:\theta}{\mathrm{tan}\:\theta}−\frac{{gl}^{\mathrm{2}} }{\mathrm{2}{v}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$$\frac{{gl}^{\mathrm{2}} }{\mathrm{2}{v}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}={b}+{l}\left(\frac{\mathrm{1}}{\mathrm{sin}\:\:\theta}−\mathrm{1}\right) \\ $$$${v}^{\mathrm{2}} =\frac{{gl}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\theta\:\left[{b}+{l}\left(\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{sin}\:\theta}\right)\right]} \\ $$$${gl}\:\mathrm{sin}\:\theta=\frac{{gl}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\theta\:\left[{b}+{l}\left(\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{sin}\:\theta}\right)\right]} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\theta\:\left(\frac{{b}}{{l}}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\right)} \\ $$$$\mathrm{2}\:\mathrm{sin}^{\mathrm{3}} \:\theta\:\left(\frac{{b}}{{l}}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\right)=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{1}−\frac{{b}}{{l}}\right)\mathrm{sin}^{\mathrm{3}} \:\theta−\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\:\theta}=\mathrm{2}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{b}}{{l}}\right)+\frac{\mathrm{2}\pi}{\mathrm{3}}\right] \\ $$$$\Rightarrow{u}=\sqrt{\left\{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{2}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{b}}{{l}}\right)+\frac{\mathrm{2}\pi}{\mathrm{3}}\right]}\right\}{gl}} \\ $$
Commented by ajfour last updated on 27/Aug/20
l(1−sin θ)−b=((v^2 sin^2 ϕ)/(2g))    h= 1−sin θ−(b/l)   =((sin θcos^2 θ)/2)      sin θ(2+cos^2 θ)=2(1−(b/l))      sin θ(3−sin^2 θ)=2(1−(b/l))  ..    Sir i think eq. for sin θ should be     this...  ....
$${l}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)−{b}=\frac{{v}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \varphi}{\mathrm{2}{g}} \\ $$$$\:\:{h}=\:\mathrm{1}−\mathrm{sin}\:\theta−\frac{{b}}{{l}}\:\:\:=\frac{\mathrm{sin}\:\theta\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{sin}\:\theta\left(\mathrm{2}+\mathrm{cos}\:^{\mathrm{2}} \theta\right)=\mathrm{2}\left(\mathrm{1}−\frac{{b}}{{l}}\right) \\ $$$$\:\:\:\:\mathrm{sin}\:\theta\left(\mathrm{3}−\mathrm{sin}\:^{\mathrm{2}} \theta\right)=\mathrm{2}\left(\mathrm{1}−\frac{{b}}{{l}}\right) \\ $$$$.. \\ $$$$\:\:{Sir}\:{i}\:{think}\:{eq}.\:{for}\:\mathrm{sin}\:\theta\:{should}\:{be} \\ $$$$\:\:\:{this}… \\ $$$$…. \\ $$
Commented by ajfour last updated on 27/Aug/20
mrW sir, dont you think even this  eq. is correct..?
$${mrW}\:{sir},\:{dont}\:{you}\:{think}\:{even}\:{this} \\ $$$${eq}.\:{is}\:{correct}..? \\ $$
Commented by mr W last updated on 27/Aug/20
in line 1 you assumed that the ball  reaches the highest point when it hits  the block, i think this is not correct.
$${in}\:{line}\:\mathrm{1}\:{you}\:{assumed}\:{that}\:{the}\:{ball} \\ $$$${reaches}\:{the}\:{highest}\:{point}\:{when}\:{it}\:{hits} \\ $$$${the}\:{block},\:{i}\:{think}\:{this}\:{is}\:{not}\:{correct}. \\ $$
Commented by mr W last updated on 27/Aug/20
Commented by ajfour last updated on 27/Aug/20
thanks sir, confusion clear.
$${thanks}\:{sir},\:{confusion}\:{clear}. \\ $$
Commented by mr W last updated on 27/Aug/20
u=(√({2+(3/(2 sin [(1/3) sin^(−1) (1−(b/l))+((2π)/3)]))}gl))
$${u}=\sqrt{\left\{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{2}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{b}}{{l}}\right)+\frac{\mathrm{2}\pi}{\mathrm{3}}\right]}\right\}{gl}} \\ $$
Commented by mr W last updated on 29/Aug/20
Commented by ajfour last updated on 29/Aug/20
nice observation, Sir.
$${nice}\:{observation},\:{Sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *