Menu Close

Question-109963




Question Number 109963 by bobhans last updated on 26/Aug/20
Answered by bemath last updated on 26/Aug/20
(1)(√(x^2 −2x+2)) = (√((x−1)^2 +1)) ≥ 1  (2)(√(x^2 −2x+10)) =(√((x−1)^2 +9)) ≥ 3  ⇔ log _3  (√((x−1)^2 +9)) ≥ 1  therefore   (√(x^2 −2x+2)) + log _3 (√(x^2 −2x+10)) =2  where  { (((√(x^2 −2x+2)) =1 ∧)),((log _3 (√(x^2 −2x+10)) = 1)) :}  we get x = 1
$$\left(\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}}\:=\:\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\:\geqslant\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{10}}\:=\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{9}}\:\geqslant\:\mathrm{3} \\ $$$$\Leftrightarrow\:\mathrm{log}\:_{\mathrm{3}} \:\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{9}}\:\geqslant\:\mathrm{1} \\ $$$${therefore}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}}\:+\:\mathrm{log}\:_{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{10}}\:=\mathrm{2} \\ $$$${where}\:\begin{cases}{\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}}\:=\mathrm{1}\:\wedge}\\{\mathrm{log}\:_{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{10}}\:=\:\mathrm{1}}\end{cases} \\ $$$${we}\:{get}\:{x}\:=\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *