Menu Close

Question-110203




Question Number 110203 by Don08q last updated on 27/Aug/20
Answered by Dwaipayan Shikari last updated on 27/Aug/20
Σ_(n=0) ^∞ ((1/(1−x)))^n =1+(1/(1−x))+(1/((1−x)^2 ))+....=(1/(1−(1/(1−x))))=((x−1)/x)=1−(1/x)  ∫1−(1/x)dx=x−logx+C
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)^{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}−{x}}+\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }+….=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}=\frac{{x}−\mathrm{1}}{{x}}=\mathrm{1}−\frac{\mathrm{1}}{{x}} \\ $$$$\int\mathrm{1}−\frac{\mathrm{1}}{{x}}{dx}={x}−{logx}+{C} \\ $$
Commented by Don08q last updated on 27/Aug/20
Thanks Sir
$${Thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *