Menu Close

Question-110204




Question Number 110204 by Algoritm last updated on 27/Aug/20
Commented by Algoritm last updated on 27/Aug/20
⧫ prove that !
$$\blacklozenge\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:! \\ $$
Commented by prakash jain last updated on 28/Aug/20
(2^n ∙4+1)^2 =4^(n+2) +2^(n+1) ∙4+1  (2^n .4+1)=(√(4^(n+2) +(2^(n+1) ∙4+1)))  3=(√9)  =(√(4+(2^0 .4+1)))  =(√(4+(√(4^2 +2^1 .4+1))))  =(√(4+(√(4^2 +(√(4^3 +2^2 ∙4+1))))))  and so on
$$\left(\mathrm{2}^{{n}} \centerdot\mathrm{4}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4}^{{n}+\mathrm{2}} +\mathrm{2}^{{n}+\mathrm{1}} \centerdot\mathrm{4}+\mathrm{1} \\ $$$$\left(\mathrm{2}^{{n}} .\mathrm{4}+\mathrm{1}\right)=\sqrt{\mathrm{4}^{{n}+\mathrm{2}} +\left(\mathrm{2}^{{n}+\mathrm{1}} \centerdot\mathrm{4}+\mathrm{1}\right)} \\ $$$$\mathrm{3}=\sqrt{\mathrm{9}} \\ $$$$=\sqrt{\mathrm{4}+\left(\mathrm{2}^{\mathrm{0}} .\mathrm{4}+\mathrm{1}\right)} \\ $$$$=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{2}^{\mathrm{1}} .\mathrm{4}+\mathrm{1}}} \\ $$$$=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\sqrt{\mathrm{4}^{\mathrm{3}} +\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{4}+\mathrm{1}}}} \\ $$$$\mathrm{and}\:\mathrm{so}\:\mathrm{on} \\ $$
Commented by Algoritm last updated on 27/Aug/20
sir  (√9)=(√(4+(2×4+1)))=(√(4+9))  ???
$$\mathrm{sir}\:\:\sqrt{\mathrm{9}}=\sqrt{\mathrm{4}+\left(\mathrm{2}×\mathrm{4}+\mathrm{1}\right)}=\sqrt{\mathrm{4}+\mathrm{9}}\:\:??? \\ $$
Commented by prakash jain last updated on 28/Aug/20
correct. but the basic idea remains  the same.
$$\mathrm{correct}.\:\mathrm{but}\:\mathrm{the}\:\mathrm{basic}\:\mathrm{idea}\:\mathrm{remains} \\ $$$$\mathrm{the}\:\mathrm{same}. \\ $$
Answered by Dwaipayan Shikari last updated on 27/Aug/20
3=(√(4+(√(4^2 +9))))  3=(√(4+(√(4^2 +(√(4^3 +17))))))  3=(√(4+(√(4^2 +(√(4^3 +(√(4^4 +33))))))))  3=(√(4+(√(4^2 +(√(4^3 +(√(4^4 +(√(4^5 +65))))))))))  3=(√(4+(√(4^2 +(√(4^3 +(√(4^4 +(√(4^5 +......))))))))))
$$\mathrm{3}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{9}}} \\ $$$$\mathrm{3}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\sqrt{\mathrm{4}^{\mathrm{3}} +\mathrm{17}}}} \\ $$$$\mathrm{3}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\sqrt{\mathrm{4}^{\mathrm{3}} +\sqrt{\mathrm{4}^{\mathrm{4}} +\mathrm{33}}}}} \\ $$$$\mathrm{3}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\sqrt{\mathrm{4}^{\mathrm{3}} +\sqrt{\mathrm{4}^{\mathrm{4}} +\sqrt{\mathrm{4}^{\mathrm{5}} +\mathrm{65}}}}}} \\ $$$$\mathrm{3}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}^{\mathrm{2}} +\sqrt{\mathrm{4}^{\mathrm{3}} +\sqrt{\mathrm{4}^{\mathrm{4}} +\sqrt{\mathrm{4}^{\mathrm{5}} +……}}}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *