Question Number 110218 by 150505R last updated on 27/Aug/20
Answered by 1549442205PVT last updated on 28/Aug/20
$$\mathrm{Let}\:\mathrm{ABCD}\:\mathrm{be}\:\mathrm{trapezum}\:\mathrm{with}\:\mathrm{AB}//\mathrm{CD} \\ $$$$\mathrm{Through}\:\mathrm{the}\:\mathrm{vertex}\:\mathrm{A}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{line}\:\mathrm{d} \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{diagonal}\:\mathrm{BD}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{ABDE}\left(\mathrm{E}=\mathrm{d}\cap\left[\mathrm{CD}\right)\right)\mathrm{is}\:\mathrm{a}\:\mathrm{paralelogram} \\ $$$$,\mathrm{so}\:\mathrm{AB}=\mathrm{DE}.\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{we} \\ $$$$\mathrm{have}\:\mathrm{CE}=\mathrm{DE}+\mathrm{CD}=\mathrm{AB}+\mathrm{CD}=\mathrm{Z} \\ $$$$\mathrm{AE}=\mathrm{BD}=\mathrm{Y},\mathrm{AC}=\mathrm{X}.\mathrm{And}\:\mathrm{since}\: \\ $$$$\mathrm{S}_{\mathrm{ABC}} =\frac{\mathrm{AB}×\mathrm{h}}{\mathrm{2}}=\frac{\mathrm{DE}×\mathrm{h}}{\mathrm{2}}=\mathrm{S}_{\mathrm{ADE}} \left(\mathrm{h}−\mathrm{altitude}\right. \\ $$$$\left.\mathrm{of}\:\mathrm{the}\:\mathrm{trapezum}\right),\mathrm{we}\:\mathrm{infer}\:\mathrm{S}_{\mathrm{ABCD}} =\mathrm{S}_{\mathrm{ACE}} \\ $$$$\mathrm{But}\:\mathrm{by}\:\mathrm{above}\:\mathrm{results}\:\mathrm{we}\:\mathrm{see}\:\mathrm{that} \\ $$$$\Delta\mathrm{ACE}\:\mathrm{has}\:\mathrm{three}\:\mathrm{sides}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{X},\mathrm{Y},\mathrm{Z},\mathrm{so}\:\mathrm{by}\:\mathrm{Heron}'\mathrm{s}\:\mathrm{formula}\:\mathrm{we}\:\mathrm{get} \\ $$$$\boldsymbol{\mathrm{S}}_{\boldsymbol{\mathrm{ABCD}}} =\boldsymbol{\mathrm{S}}_{\boldsymbol{\mathrm{ACE}}} =\sqrt{\:\boldsymbol{\mathrm{p}}\left(\boldsymbol{\mathrm{p}}−\boldsymbol{\mathrm{X}}\right)\left(\boldsymbol{\mathrm{p}}−\boldsymbol{\mathrm{Y}}\right)\left(\boldsymbol{\mathrm{p}}−\boldsymbol{\mathrm{Z}}\right)}\: \\ $$$$\boldsymbol{\mathrm{where}}\:\:\boldsymbol{\mathrm{p}}=\frac{\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{Y}}+\boldsymbol{\mathrm{Z}}}{\mathrm{2}} \\ $$