Menu Close

Question-110299




Question Number 110299 by Lekhraj last updated on 28/Aug/20
Answered by Her_Majesty last updated on 28/Aug/20
5x+5y=2xy  ⇒ 5∣xy ⇒ 5∣x∨5∣y  let x=5k  25k+5y=10ky  y=((5k)/(2k−1))  k=1 ⇒ y=5∧x=5 but x≠y  k=3 ⇒ y=3∧x=15 ⇒ (√(x+y))=3(√2)  only solution because ((5k)/(2k−1))>2∀k>0  of course x=3∧y=15 is the 2^(nd)  possibility  but it also leads to (√(x+y))=3(√2)
5x+5y=2xy5xy5x5yletx=5k25k+5y=10kyy=5k2k1k=1y=5x=5butxyk=3y=3x=15x+y=32onlysolutionbecause5k2k1>2k>0ofcoursex=3y=15isthe2ndpossibilitybutitalsoleadstox+y=32
Commented by Lekhraj last updated on 28/Aug/20
Thanks
Thanks
Commented by udaythool last updated on 28/Aug/20
x+y=2xy/5⇒5k+y=2ky for  some k∈Z\{0}⇒5+m=2km⇒m=±1,±5  m=1⇒k=3⇒x=15,y=3⇒(√(x+y))=±3(√2)  m=−1⇒k=−2⇒x=−10,y=2⇒(√(x+y))=±2(√2)i  m=5⇒k=1⇒x=5,y=5 But x≠y⇒m≠5  m=−5⇒k=0 which is not possible.
x+y=2xy/55k+y=2kyforsomekZ{0}5+m=2kmm=±1,±5m=1k=3x=15,y=3x+y=±32m=1k=2x=10,y=2x+y=±22im=5k=1x=5,y=5Butxym5m=5k=0whichisnotpossible.
Commented by Her_Majesty last updated on 28/Aug/20
the question says “distinct positive integers”  so as I stated, there′s only one solution
thequestionsaysdistinctpositiveintegerssoasIstated,theresonlyonesolution
Commented by Rasheed.Sindhi last updated on 28/Aug/20
(√(x+y))=±3(√2)  is not correct,I think.  Because the symbol “(√(    )) ”is  used for positive square root  only. For both roots “±(√(    ))”is  used.(And for negative root   “−(√(    ))”is used.)
x+y=±32isnotcorrect,Ithink.Becausethesymbolisusedforpositivesquarerootonly.Forbothroots±isused.(Andfornegativerootisused.)
Commented by Her_Majesty last updated on 28/Aug/20
(√x) is a unique number ∀x∈C  if we ask for the solution of x^2 =y we  want all possible values for x and get  x_1 =−(√y) and x_2 =(√y). we write x=±(√y)  but that obviously cannot mean  x=−(√y) ∧ x=+(√y). we would have to write  x=−(√y) xor x=+(√y) (different symbols for  xor in use) but we are too lazy and write  x=−(√x) ∨ x=+(√x) which is wrong...  it would make absolutely no sense to think  (√y)=±(√y) because then x_1 =±(−(√y)) and  x_2 =±(+(√y)) ⇒ x_1 =∓(√y) and x_2 =±(√y)...
xisauniquenumberxCifweaskforthesolutionofx2=ywewantallpossiblevaluesforxandgetx1=yandx2=y.wewritex=±ybutthatobviouslycannotmeanx=yx=+y.wewouldhavetowritex=yxorx=+y(differentsymbolsforxorinuse)butwearetoolazyandwritex=xx=+xwhichiswrongitwouldmakeabsolutelynosensetothinky=±ybecausethenx1=±(y)andx2=±(+y)x1=yandx2=±y
Commented by udaythool last updated on 28/Aug/20
Oh!  Yes, I haven′t noticed...
Oh!Yes,Ihaventnoticed
Answered by Rasheed.Sindhi last updated on 28/Aug/20
  (1/x)=(2/5)−(1/y)=((2y−5)/(5y))    x=((5y)/(2y−5))  As x,y∈Z^+ , y≥3  For y=3,x=15  Also for symmetry     x=3,y=15  (√(x+y))=(√(3+15))=3(√2)  Continue
1x=251y=2y55yx=5y2y5Asx,yZ+,y3Fory=3,x=15Alsoforsymmetryx=3,y=15x+y=3+15=32Continue
Commented by Lekhraj last updated on 28/Aug/20
Thanks
Thanks
Answered by 1549442205PVT last updated on 29/Aug/20
(1/x)+(1/y)=(2/5)⇔((x+y)/(xy))=(2/5)⇔2xy=5(x+y)  ⇔4xy−10(x+y)+25=25  ⇔(2x−5)(2y−5)=25  (1)⇒(2x−5 )is  an odd divisor of 25  ⇒2x−5∈{1,−1,5,−5,−25,25}  i)2x−5=1⇒x=3 .Replace into (1) we  get y=15  ii)2x−5=−1⇒x=2.Replace into  (1)we get y=−10 ∉Z^+ ⇒rejected  iii)2x−5=5⇒x=5.Replace into (1)  we get y=5  iv)2x−5=−25⇒x=−10⇒rejected  v)2x−5=25⇒x=15⇒y=3  Combinating all above cases we get  (x,y)∈{(3,15),(5,5),(15,3)}  ⇒(√(x+y)) ∈{3(√2) ,(√(10))}
1x+1y=25x+yxy=252xy=5(x+y)4xy10(x+y)+25=25(2x5)(2y5)=25(1)(2x5)isanodddivisorof252x5{1,1,5,5,25,25}i)2x5=1x=3.Replaceinto(1)wegety=15ii)2x5=1x=2.Replaceinto(1)wegety=10Z+rejectediii)2x5=5x=5.Replaceinto(1)wegety=5iv)2x5=25x=10rejectedv)2x5=25x=15y=3Combinatingallabovecasesweget(x,y){(3,15),(5,5),(15,3)}x+y{32,10}
Commented by Her_Majesty last updated on 29/Aug/20
saying it again, we′re searching for distinct  integers ⇒ x≠y
sayingitagain,weresearchingfordistinctintegersxy
Commented by Rasheed.Sindhi last updated on 29/Aug/20
Nice Sir!  Only exclude (5,5) because they  are not distinct.  You′ve given the problem usefull  form:              (2x−5)(2y−5)=25  This form offers limited trials!
NiceSir!Onlyexclude(5,5)becausetheyarenotdistinct.Youvegiventheproblemusefullform:(2x5)(2y5)=25Thisformofferslimitedtrials!
Commented by 1549442205PVT last updated on 30/Aug/20
Thank Sir.I don′t note that  hypothesis .
ThankSir.Idontnotethathypothesis.

Leave a Reply

Your email address will not be published. Required fields are marked *