Question Number 110543 by mnjuly1970 last updated on 29/Aug/20
Answered by mathdave last updated on 29/Aug/20
$${solution} \\ $$$${let}\:{y}={x}^{\mathrm{2}} \:\:{and}\:{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{y}}}{dy}\:\:{then}\:{putting}\:{into} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−{y}\right)\mathrm{ln}\left(\mathrm{1}+{y}\right)}{{y}}{dy} \\ $$$${from}\:{algebraic}\:{uding}\:{this}\:{notation} \\ $$$${ab}=\frac{\mathrm{1}}{\mathrm{4}}\left({a}+{b}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\left({a}−{b}\right)^{\mathrm{2}} \\ $$$$\mathrm{ln}\left(\mathrm{1}−{y}\right)\mathrm{ln}\left(\mathrm{1}+{y}\right)=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\right) \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)}{{y}}{dy}−\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\right)}{{y}}{dy} \\ $$$${let}\:{I}_{{x}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)}{{y}}{dy}\:\:\:\:\:\left({let}\:\:{x}=\mathrm{1}−{y}^{\mathrm{2}} \:\right. \\ $$$${and}\:\:{dy}=−\frac{{dx}}{\mathrm{2}\sqrt{\mathrm{1}−{x}}} \\ $$$${I}_{{x}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}}{\mathrm{1}−{x}}{dx} \\ $$$${let}\: \\ $$$${I}_{{x}} \left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}}{\mathrm{1}−{x}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}} \mathrm{ln}^{\mathrm{2}} {xdx} \\ $$$$\frac{\partial^{\mathrm{2}} }{\partial{a}^{\mathrm{2}} }\mid_{{a}=\mathrm{0}} {I}_{{x}} \left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\frac{\partial^{\mathrm{2}} }{\partial{a}^{\mathrm{2}} }\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}+{a}} {dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$${I}_{{x}} ^{''} \left(\mathrm{0}\right)=\zeta\left(\mathrm{3}\right)……\left({x}\right)\: \\ $$$${let}\:{I}_{{xx}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}\:}\right)}{{y}}{dy}\:\:\:\:{let}\:\:{x}=\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\:\:{and}\:{dy}=−\frac{\mathrm{2}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} } \\ $$$${I}_{{xx}} =\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right)}{dx} \\ $$$${I}_{{xx}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}}{\mathrm{1}+{x}}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}}{\mathrm{1}−{x}}{dx}\:\:\:{therefore} \\ $$$${I}_{{xx}} ^{''} \left(\mathrm{0}\right)=\left(−\mathrm{1}\right)^{{n}} \mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} }+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$${I}_{{xx}} ^{''} \left(\mathrm{0}\right)=\mathrm{2}×\frac{\mathrm{3}}{\mathrm{4}}\zeta\left(\mathrm{3}\right)+\mathrm{2}\zeta\left(\mathrm{3}\right)=\frac{\mathrm{7}}{\mathrm{2}}\zeta\left(\mathrm{3}\right)…….\left(\mathrm{2}\right) \\ $$$${but} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{8}}\left[{I}_{{x}} ^{''} \left(\mathrm{0}\right)−{I}_{{xx}} ^{''} \left(\mathrm{0}\right)\right]=\frac{\mathrm{1}}{\mathrm{8}}\left[\zeta\left(\mathrm{3}\right)−\frac{\mathrm{7}}{\mathrm{2}}\zeta\left(\mathrm{3}\right)\right] \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{8}}\left[−\frac{\mathrm{5}}{\mathrm{2}}\zeta\left(\mathrm{3}\right)\right]=−\frac{\mathrm{5}}{\mathrm{16}}\zeta\left(\mathrm{3}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}{dx}=−\frac{\mathrm{5}}{\mathrm{16}}\zeta\left(\mathrm{3}\right) \\ $$$${where}\:\:\zeta\left(\mathrm{3}\right)\Rightarrow{apery}'{s}\:{constant} \\ $$$${by}\:{mathdave}\left(\mathrm{29}/\mathrm{08}/\mathrm{2020}\right) \\ $$
Commented by mnjuly1970 last updated on 29/Aug/20
$${thank}\:{you}\:{very}\:{much}…{sir}… \\ $$
Commented by mathdave last updated on 29/Aug/20
$${you}\:{are}\:{welcome} \\ $$