Menu Close

Question-110543




Question Number 110543 by mnjuly1970 last updated on 29/Aug/20
Answered by mathdave last updated on 29/Aug/20
solution  let y=x^2   and dx=(1/(2(√y)))dy  then putting into  I=(1/2)∫_0 ^1 ((ln(1−y)ln(1+y))/y)dy  from algebraic uding this notation  ab=(1/4)(a+b)^2 −(1/4)(a−b)^2   ln(1−y)ln(1+y)=(1/4)ln^2 (1−y^2 )−(1/4)ln^2 (((1−y)/(1+y)))  I=(1/8)∫_0 ^1 ((ln^2 (1−y^2 ))/y)dy−(1/8)∫_0 ^1 ((ln^2 (((1−y)/(1+y))))/y)dy  let I_x =∫_0 ^1 ((ln^2 (1−y^2 ))/y)dy     (let  x=1−y^2    and  dy=−(dx/(2(√(1−x))))  I_x =(1/2)∫_0 ^1 ((ln^2 x)/(1−x))dx  let   I_x (a)=(1/2)∫_0 ^1 ((ln^2 x)/(1−x))dx=(1/2)Σ_(n=1) ^∞ ∫_0 ^1 x^(n−1) ln^2 xdx  (∂^2 /∂a^2 )∣_(a=0) I_x (a)=(1/2)(∂^2 /∂a^2 )Σ_(n=1) ^∞ ∫_0 ^1 x^(n−1+a) dx=Σ_(n=1) ^∞ (1/n^3 )  I_x ^(′′) (0)=ζ(3)......(x)   let I_(xx) =∫_0 ^1 ((ln^2 (((1−y)/(1+y ))))/y)dy    let  x=((1−y)/(1+y))  and dy=−(2/((1+x)^2 ))  I_(xx) =2∫_0 ^1 ((ln^2 x)/(1−x^2 ))dx=2∫_0 ^1 ((ln^2 (x))/((1+x)(1−x)))dx  I_(xx) =∫_0 ^1 ((ln^2 x)/(1+x))dx+∫_0 ^1 ((ln^2 x)/(1−x))dx   therefore  I_(xx) ^(′′) (0)=(−1)^n 2Σ_(n=1) ^∞ (1/n^3 )+2Σ_(n=1) ^∞ (1/n^3 )  I_(xx) ^(′′) (0)=2×(3/4)ζ(3)+2ζ(3)=(7/2)ζ(3).......(2)  but  I=(1/8)[I_x ^(′′) (0)−I_(xx) ^(′′) (0)]=(1/8)[ζ(3)−(7/2)ζ(3)]  I=(1/8)[−(5/2)ζ(3)]=−(5/(16))ζ(3)  ∵∫_0 ^1 ((ln(1−x^2 )ln(1+x^2 ))/x)dx=−(5/(16))ζ(3)  where  ζ(3)⇒apery′s constant  by mathdave(29/08/2020)
solutionlety=x2anddx=12ydythenputtingintoI=1201ln(1y)ln(1+y)ydyfromalgebraicudingthisnotationab=14(a+b)214(ab)2ln(1y)ln(1+y)=14ln2(1y2)14ln2(1y1+y)I=1801ln2(1y2)ydy1801ln2(1y1+y)ydyletIx=01ln2(1y2)ydy(letx=1y2anddy=dx21xIx=1201ln2x1xdxletIx(a)=1201ln2x1xdx=12n=101xn1ln2xdx2a2a=0Ix(a)=122a2n=101xn1+adx=n=11n3Ix(0)=ζ(3)(x)letIxx=01ln2(1y1+y)ydyletx=1y1+yanddy=2(1+x)2Ixx=201ln2x1x2dx=201ln2(x)(1+x)(1x)dxIxx=01ln2x1+xdx+01ln2x1xdxthereforeIxx(0)=(1)n2n=11n3+2n=11n3Ixx(0)=2×34ζ(3)+2ζ(3)=72ζ(3).(2)butI=18[Ix(0)Ixx(0)]=18[ζ(3)72ζ(3)]I=18[52ζ(3)]=516ζ(3)01ln(1x2)ln(1+x2)xdx=516ζ(3)whereζ(3)aperysconstantbymathdave(29/08/2020)
Commented by mnjuly1970 last updated on 29/Aug/20
thank you very much...sir...
thankyouverymuchsir
Commented by mathdave last updated on 29/Aug/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *