Question-110543 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 110543 by mnjuly1970 last updated on 29/Aug/20 Answered by mathdave last updated on 29/Aug/20 solutionlety=x2anddx=12ydythenputtingintoI=12∫01ln(1−y)ln(1+y)ydyfromalgebraicudingthisnotationab=14(a+b)2−14(a−b)2ln(1−y)ln(1+y)=14ln2(1−y2)−14ln2(1−y1+y)I=18∫01ln2(1−y2)ydy−18∫01ln2(1−y1+y)ydyletIx=∫01ln2(1−y2)ydy(letx=1−y2anddy=−dx21−xIx=12∫01ln2x1−xdxletIx(a)=12∫01ln2x1−xdx=12∑∞n=1∫01xn−1ln2xdx∂2∂a2∣a=0Ix(a)=12∂2∂a2∑∞n=1∫01xn−1+adx=∑∞n=11n3Ix″(0)=ζ(3)……(x)letIxx=∫01ln2(1−y1+y)ydyletx=1−y1+yanddy=−2(1+x)2Ixx=2∫01ln2x1−x2dx=2∫01ln2(x)(1+x)(1−x)dxIxx=∫01ln2x1+xdx+∫01ln2x1−xdxthereforeIxx″(0)=(−1)n2∑∞n=11n3+2∑∞n=11n3Ixx″(0)=2×34ζ(3)+2ζ(3)=72ζ(3)…….(2)butI=18[Ix″(0)−Ixx″(0)]=18[ζ(3)−72ζ(3)]I=18[−52ζ(3)]=−516ζ(3)∵∫01ln(1−x2)ln(1+x2)xdx=−516ζ(3)whereζ(3)⇒apery′sconstantbymathdave(29/08/2020) Commented by mnjuly1970 last updated on 29/Aug/20 thankyouverymuch…sir… Commented by mathdave last updated on 29/Aug/20 youarewelcome Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: it-seems-too-hard-for-many-here-to-post-their-questions-as-questions-answers-as-answers-and-comments-as-comments-hereby-I-introduce-the-next-step-I-ll-post-answers-and-the-task-is-find-questionsNext Next post: Question-176076 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.