Menu Close

Question-110614




Question Number 110614 by mathdave last updated on 29/Aug/20
Answered by Dwaipayan Shikari last updated on 29/Aug/20
∫_0 ^(π/2) (((cosx)^π )/((cosx)^π +(sinx)^π ))dx=∫_0 ^(π/2) (((sinx)^π )/((sinx)^π +(cosx)^π ))=I  2I=∫_0 ^(π/2) (((sinx)^π +(cosx)^π )/((sinx)^π +(cosx)^π ))dx  2I=(π/2)  I=(π/4)
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left({cosx}\right)^{\pi} }{\left({cosx}\right)^{\pi} +\left({sinx}\right)^{\pi} }{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left({sinx}\right)^{\pi} }{\left({sinx}\right)^{\pi} +\left({cosx}\right)^{\pi} }={I} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left({sinx}\right)^{\pi} +\left({cosx}\right)^{\pi} }{\left({sinx}\right)^{\pi} +\left({cosx}\right)^{\pi} }{dx} \\ $$$$\mathrm{2}{I}=\frac{\pi}{\mathrm{2}} \\ $$$${I}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 29/Aug/20
perfect ...
$${perfect}\:… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *