Question Number 110739 by ajfour last updated on 30/Aug/20
Commented by ajfour last updated on 30/Aug/20
$${Find}\:{height}\:{of}\:{center}\:{of}\:{mass}\:{of} \\ $$$${hemisphere}\:{if}\:{its}\:{density}\: \\ $$$$\boldsymbol{\rho}=\:\boldsymbol{\rho}_{\mathrm{0}} \left(\mathrm{1}+\frac{{y}}{{R}}\right). \\ $$
Answered by mr W last updated on 30/Aug/20
$${r}^{\mathrm{2}} ={R}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$${y}_{{S}} =\frac{\int\rho{ydA}}{\int\rho{dA}}=\frac{\int_{\mathrm{0}} ^{{R}} \rho_{\mathrm{0}} \left(\mathrm{1}+\frac{{y}}{{R}}\right){y}\pi\left({R}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}}{\int_{\mathrm{0}} ^{{R}} \rho_{\mathrm{0}} \left(\mathrm{1}+\frac{{y}}{{R}}\right)\pi\left({R}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}} \\ $$$$=\frac{\int_{\mathrm{0}} ^{{R}} {y}\left({R}+{y}\right)\left({R}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}}{\int_{\mathrm{0}} ^{{R}} \left({R}+{y}\right)\left({R}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}}=\frac{{A}}{{B}} \\ $$$${B}=\int_{\mathrm{0}} ^{{R}} \left({R}+{y}\right)\left({R}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy} \\ $$$$=\int_{\mathrm{0}} ^{{R}} \left({R}^{\mathrm{3}} +{R}^{\mathrm{2}} {y}−{Ry}^{\mathrm{2}} −{y}^{\mathrm{3}} \right){dy} \\ $$$$={R}^{\mathrm{3}} {R}+{R}^{\mathrm{2}} \frac{{R}^{\mathrm{2}} }{\mathrm{2}}−{R}\frac{{R}^{\mathrm{3}} }{\mathrm{3}}−\frac{{R}^{\mathrm{4}} }{\mathrm{4}}=\frac{\mathrm{11}{R}^{\mathrm{4}} }{\mathrm{12}} \\ $$$${A}=\int_{\mathrm{0}} ^{{R}} {y}\left({R}+{y}\right)\left({R}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy} \\ $$$$=\int_{\mathrm{0}} ^{{R}} \left({R}^{\mathrm{3}} {y}+{R}^{\mathrm{2}} {y}^{\mathrm{2}} −{Ry}^{\mathrm{3}} −{y}^{\mathrm{4}} \right){dy} \\ $$$$={R}^{\mathrm{3}} \frac{{R}^{\mathrm{2}} }{\mathrm{2}}+{R}^{\mathrm{2}} \frac{{R}^{\mathrm{3}} }{\mathrm{3}}−{R}\frac{{R}^{\mathrm{4}} }{\mathrm{4}}−\frac{{R}^{\mathrm{5}} }{\mathrm{5}}=\frac{\mathrm{23}{R}^{\mathrm{5}} }{\mathrm{60}} \\ $$$$\Rightarrow{y}_{{S}} =\frac{\mathrm{23}{R}^{\mathrm{5}} }{\mathrm{60}}×\frac{\mathrm{12}}{\mathrm{11}{R}^{\mathrm{4}} }=\frac{\mathrm{23}}{\mathrm{55}}{R} \\ $$
Commented by ajfour last updated on 30/Aug/20
$${What}\:{a}\:{presentation},\:{Sir}! \\ $$$${Thanks}\:{a}\:{lot}.\:{Incredible}! \\ $$