Menu Close

Question-110869




Question Number 110869 by Study last updated on 31/Aug/20
Answered by mathdave last updated on 31/Aug/20
let I=lim_(x→0) x!^(1/x)   by loggin both side we have  lnI=lim_(x→0) ((lnx!)/x)      but  x!=Γ(x+1)  lnI=lim_(x→0) ((lnΓ(1+x))/x)    apply lihospita′s rule  lnI=lim_(x→0) ((Γ^′ (1+x))/(Γ(1+x)))    but Ψ(1+x)=((Γ^′ (1+x))/(Γ(1+x)))  lnI=lim_(x→0) Ψ(1+x)=−Ψ(1)  I=e^(−Ψ)   ∵lim_(x→0) ((x!))^(1/x) =e^(−Ψ)
$${let}\:{I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}!^{\frac{\mathrm{1}}{{x}}} \\ $$$${by}\:{loggin}\:{both}\:{side}\:{we}\:{have} \\ $$$$\mathrm{ln}{I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}{x}!}{{x}}\:\:\:\:\:\:{but}\:\:{x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$$\mathrm{ln}{I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\Gamma\left(\mathrm{1}+{x}\right)}{{x}}\:\:\:\:{apply}\:{lihospita}'{s}\:{rule} \\ $$$$\mathrm{ln}{I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\Gamma^{'} \left(\mathrm{1}+{x}\right)}{\Gamma\left(\mathrm{1}+{x}\right)}\:\:\:\:{but}\:\Psi\left(\mathrm{1}+{x}\right)=\frac{\Gamma^{'} \left(\mathrm{1}+{x}\right)}{\Gamma\left(\mathrm{1}+{x}\right)} \\ $$$$\mathrm{ln}{I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\Psi\left(\mathrm{1}+{x}\right)=−\Psi\left(\mathrm{1}\right) \\ $$$${I}={e}^{−\Psi} \\ $$$$\because\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{{x}}]{{x}!}={e}^{−\Psi} \:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *