Question Number 110887 by I want to learn more last updated on 31/Aug/20
Commented by Aina Samuel Temidayo last updated on 31/Aug/20
$$\exists\:\mathrm{100a}+\mathrm{10b}+\mathrm{c}\:\in\:\left(\mathrm{100},\mathrm{999}\right)\:\mathrm{s}.\mathrm{t}. \\ $$$$\mathrm{100a}+\mathrm{10b}+\mathrm{c}\:=\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \\ $$$$\mathrm{100a}+\mathrm{10b}+\mathrm{c}\:= \\ $$$$\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}−\mathrm{bc}−\mathrm{ca}\right) \\ $$$$+\mathrm{3abc}=\mathrm{10}\left(\mathrm{10a}+\mathrm{b}\right)\:+\mathrm{c} \\ $$$$ \\ $$$$\mathrm{Satisfying}\:\mathrm{these}\:\mathrm{conditions},\:\mathrm{the} \\ $$$$\mathrm{numbers}\:\mathrm{are}. \\ $$$$ \\ $$$$\mathrm{153} \\ $$$$\mathrm{370} \\ $$$$\mathrm{371} \\ $$$$\mathrm{407} \\ $$$$ \\ $$$$\mathrm{They}\:\mathrm{are}\:\mathrm{called}\:\mathrm{ARMSTRONG} \\ $$$$\mathrm{numbers}. \\ $$
Commented by I want to learn more last updated on 31/Aug/20
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate} \\ $$
Answered by Rasheed.Sindhi last updated on 02/Sep/20
$$\mathrm{100}{h}+\mathrm{10}{t}+{u}={h}^{\mathrm{3}} +{t}^{\mathrm{3}} +{u}^{\mathrm{3}} \\ $$$$\left({h}^{\mathrm{3}} −\mathrm{100}{h}\right)+\left({t}^{\mathrm{3}} −\mathrm{10}{t}\right)+\left({u}^{\mathrm{3}} −{u}\right)=\mathrm{0} \\ $$$$\:\:\:{h}\left({h}−\mathrm{10}\right)\left({h}+\mathrm{10}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{t}\left({t}^{\mathrm{2}} −\mathrm{10}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{u}\left({u}−\mathrm{1}\right)\left({u}+\mathrm{1}\right)=\mathrm{0}..\mathbb{A} \\ $$$$\:^{\bullet} \mathcal{F}{or}\:{u}=\mathrm{0},\mathrm{1}: \\ $$$${h}\left({h}−\mathrm{10}\right)\left({h}+\mathrm{10}\right)+{t}\left({t}^{\mathrm{2}} −\mathrm{10}\right)=\mathrm{0} \\ $$$${h}\left(\mathrm{10}−{h}\right)\left(\mathrm{10}+{h}\right)={t}\left({t}^{\mathrm{2}} −\mathrm{10}\right) \\ $$$${h}\left(\mathrm{10}−{h}\right)\left(\mathrm{10}+{h}\right)>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{t}\left({t}^{\mathrm{2}} −\mathrm{10}\right)>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{t}>\mathrm{3} \\ $$$$\:\:\:{u}=\mathrm{0},\mathrm{1}\Rightarrow{t}>\mathrm{3} \\ $$$${h}^{\mathrm{3}} −\mathrm{100}{h}+{t}\left({t}^{\mathrm{2}} −\mathrm{10}\right) \\ $$$${verifying}\:{various}\:{values}\:{of}\:{t} \\ $$$$\left(>\mathrm{3}\right)\:{and}\:{of}\:{course}\:{upto}\:\mathrm{9} \\ $$$${let}\:{t}=\mathrm{7}\:{and}\:{h}=\mathrm{3}\:{satisfy}\:{the}\:{equation}: \\ $$$${h}\left(\mathrm{100}−{h}^{\mathrm{2}} \right)=\mathrm{7}\left(\mathrm{7}^{\mathrm{2}} −\mathrm{10}\right) \\ $$$${h}^{\mathrm{3}} −\mathrm{100}{h}+\mathrm{273}=\mathrm{0} \\ $$$${h}=\mathrm{3} \\ $$$${Hence}\:{two}\:{required}\:{numbers} \\ $$$${are}:\mathrm{370}\:\&\:\mathrm{371} \\ $$$$\:^{\bullet} \mathcal{F}{or}\:{u}>\mathrm{1}\:{this}\:{approach}\:{is} \\ $$$${difficult}. \\ $$
Commented by I want to learn more last updated on 31/Aug/20
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate}. \\ $$