Menu Close

Question-110887




Question Number 110887 by I want to learn more last updated on 31/Aug/20
Commented by Aina Samuel Temidayo last updated on 31/Aug/20
∃ 100a+10b+c ∈ (100,999) s.t.  100a+10b+c = a^3 +b^3 +c^3   100a+10b+c =  (a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)  +3abc=10(10a+b) +c    Satisfying these conditions, the  numbers are.    153  370  371  407    They are called ARMSTRONG  numbers.
100a+10b+c(100,999)s.t.100a+10b+c=a3+b3+c3100a+10b+c=(a+b+c)(a2+b2+c2abbcca)+3abc=10(10a+b)+cSatisfyingtheseconditions,thenumbersare.153370371407TheyarecalledARMSTRONGnumbers.
Commented by I want to learn more last updated on 31/Aug/20
Thanks sir, i appreciate
Thankssir,iappreciate
Answered by Rasheed.Sindhi last updated on 02/Sep/20
100h+10t+u=h^3 +t^3 +u^3   (h^3 −100h)+(t^3 −10t)+(u^3 −u)=0     h(h−10)(h+10)                   +t(t^2 −10)                         +u(u−1)(u+1)=0..A  ^• For u=0,1:  h(h−10)(h+10)+t(t^2 −10)=0  h(10−h)(10+h)=t(t^2 −10)  h(10−h)(10+h)>0             ⇒t(t^2 −10)>0               ⇒t>3     u=0,1⇒t>3  h^3 −100h+t(t^2 −10)  verifying various values of t  (>3) and of course upto 9  let t=7 and h=3 satisfy the equation:  h(100−h^2 )=7(7^2 −10)  h^3 −100h+273=0  h=3  Hence two required numbers  are:370 & 371  ^• For u>1 this approach is  difficult.
100h+10t+u=h3+t3+u3(h3100h)+(t310t)+(u3u)=0h(h10)(h+10)+t(t210)+u(u1)(u+1)=0..AForu=0,1:h(h10)(h+10)+t(t210)=0h(10h)(10+h)=t(t210)h(10h)(10+h)>0t(t210)>0t>3u=0,1t>3h3100h+t(t210)verifyingvariousvaluesoft(>3)andofcourseupto9lett=7andh=3satisfytheequation:h(100h2)=7(7210)h3100h+273=0h=3Hencetworequirednumbersare:370&371Foru>1thisapproachisdifficult.
Commented by I want to learn more last updated on 31/Aug/20
Thanks sir, i appreciate.
Thankssir,iappreciate.

Leave a Reply

Your email address will not be published. Required fields are marked *