Question Number 111044 by mathdave last updated on 01/Sep/20
Commented by kaivan.ahmadi last updated on 01/Sep/20
$$\mathrm{5}. \\ $$$${a}\mid{m},{b}\mid{m}\Rightarrow{ab}\mid{m}\:{on}\:{the}\:{other}\:{hand} \\ $$$${lcm}\left({a},{b}\right)\mid{ab}\:{so}\:{lcm}\left({a},{b}\right)\mid{m}. \\ $$$$\mathrm{6}. \\ $$$${let}\:{a},{b}\in\mathbb{R} \\ $$$${if}\:{a}={b}\Rightarrow{max}\left({a},{b}\right)={min}\left({a},{b}\right)={a}={b}\Rightarrow{max}\left({a},{b}\right)+{min}\left({a},{b}\right)={a}+{b}=\mathrm{2}{a}=\mathrm{2}{b} \\ $$$${if}\:{a}>{b}\Rightarrow{max}\left({a},{b}\right)={a},{min}\left({a},{b}\right)={b}\Rightarrow \\ $$$${max}\left({a},{b}\right)+{min}\left({a},{b}\right)={a}+{b}. \\ $$$$ \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 02/Sep/20
$$\mathrm{4}. \\ $$$${a}_{{i}} \overset{{m}} {\equiv}{b}_{{i}} \Rightarrow{a}_{{i}} ={mb}_{{i}} +{k}_{{i}} ;{k}_{{i}} \in\mathbb{Z}\Rightarrow \\ $$$$\underset{\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} =\underset{\mathrm{1}} {\overset{{n}} {\sum}}\left({mb}_{{i}} +{k}_{{i}} \right)={m}\underset{\mathrm{1}} {\overset{{n}} {\sum}}{b}_{{i}} +\underset{\mathrm{1}} {\overset{{n}} {\sum}}{k}_{{i}} \\ $$$${let}\:\underset{\mathrm{1}} {\overset{{n}} {\sum}}{k}_{{i}} ={t}\Rightarrow \\ $$$$\underset{\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} ={m}\underset{\mathrm{1}} {\overset{{n}} {\sum}}{b}_{{i}} +{t}\Rightarrow\underset{\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} \overset{{m}} {\equiv}\underset{\mathrm{1}} {\overset{{n}} {\sum}}{b}_{{i}} . \\ $$
Commented by kaivan.ahmadi last updated on 01/Sep/20