Menu Close

Question-111432




Question Number 111432 by ajfour last updated on 03/Sep/20
Commented by ajfour last updated on 03/Sep/20
Find perimeter of △OAB.
FindperimeterofOAB.
Commented by ajfour last updated on 04/Sep/20
mrW Sir, can you please confirm  answer to this question?
mrWSir,canyoupleaseconfirmanswertothisquestion?
Answered by ajfour last updated on 04/Sep/20
Commented by ajfour last updated on 04/Sep/20
cos α=(1/(a+1))  sin β=(a/(a+1)) = 1−cos α =(b/(1+2a+b))  α+β=60°  ⇒ sin β =(a/(a+1))= ((√3)/2)((1/(a+1)))−(1/2)(√(1−(1/((a+1)^2 ))))  ⇒   2a=(√3)−(√((a+1)^2 −1))  ⇒  3+4a^2 −4(√3)a = a^2 +2a  ⇒    3a^2 −(4(√3)+2)a+3=0  ⇒  a=((2(√3)+1)/3)−((√((2(√3)+1)^2 −9))/3)  ⇒  a=((2(√3)+1−2(√(1+(√3))))/3) ≈ 0.38611         1+(1/a)=1+((2a+1)/b)  ⇒     b=a(2a+1)≈ 0.68425  .....
cosα=1a+1sinβ=aa+1=1cosα=b1+2a+bα+β=60°sinβ=aa+1=32(1a+1)1211(a+1)22a=3(a+1)213+4a243a=a2+2a3a2(43+2)a+3=0a=23+13(23+1)293a=23+121+330.386111+1a=1+2a+1bb=a(2a+1)0.68425..
Commented by mr W last updated on 06/Feb/25
sin β=(a/(a+1)) = 1−cos α ≠(b/(1+2a+b))  they are not collinear!
sinβ=aa+1=1cosαb1+2a+btheyarenotcollinear!
Answered by 1549442205PVT last updated on 05/Sep/20
(See the figure below)  HJ=HQ=x;EP=EG=EF=y  Denote by x the radius of the circle  (B),by y −the radius of small circle  Apply Steward′s theorem we have:  (1+x)^2 (1+y)+2^2 (x+y)−(1+y)^2 (1+x+2y)  =(1+x+2y)(1+y)(x+y)  ⇔1+2x+x^2 +y+2xy+x^2 y+4x+4y−1  −2y−y^2 −x−2xy−xy^2 −2y−4y^2 −2y^3   =x+x^2 +4xy+x^2 y+3xy^2 +3y^2 +2y^3   ⇔4y^3 +8y^2 +4xy^2 +4xy−4x=0(1)  Since NE//HQ,by Thalet′theorem  we have:((NE)/(HQ))=((OE)/(OH))⇔(y/x)=((1+y)/(1+x+y))  ⇔x+xy=y+xy+y^2 ⇔x=2y^2 +y(2)  Replace (2) into (1) we get:  4y^3 +8y^2 +4y^2 (2y^2 +y)−4y(2y^2 +y)=0  ⇔8y^4 +16y^3 +4y^2 −4y=0  ⇔2y^3 +4y^2 +y−1=0  ⇔(y+1)(2y^2 +2y−1)=0  ⇔2y^2 +2y−1=0 ;Δ′=1+2=3  ⇒y=((−1+(√3))/2).Replace into (2)we get  x=(2y^2 +y)=2.((2−(√3))/2)+(((√3)−1)/2)=((3−(√3))/2)  Thus,x=((3−(√3))/2)≈0.6339  y=(((√3)−1)/2)≈0.3660.Consequently,the  perimeter of triangle OAB equal to  4+2x+2y=4+3−(√3)+(√3)−1=6
(Seethefigurebelow)HJ=HQ=x;EP=EG=EF=yDenotebyxtheradiusofthecircle(B),byytheradiusofsmallcircleApplyStewardstheoremwehave:(1+x)2(1+y)+22(x+y)(1+y)2(1+x+2y)=(1+x+2y)(1+y)(x+y)1+2x+x2+y+2xy+x2y+4x+4y12yy2x2xyxy22y4y22y3=x+x2+4xy+x2y+3xy2+3y2+2y34y3+8y2+4xy2+4xy4x=0(1)SinceNE//HQ,byThalettheoremwehave:NEHQ=OEOHyx=1+y1+x+yx+xy=y+xy+y2x=2y2+y(2)Replace(2)into(1)weget:4y3+8y2+4y2(2y2+y)4y(2y2+y)=08y4+16y3+4y24y=02y3+4y2+y1=0(y+1)(2y2+2y1)=02y2+2y1=0;Δ=1+2=3y=1+32.Replaceinto(2)wegetx=(2y2+y)=2.232+312=332Thus,x=3320.6339y=3120.3660.Consequently,theperimeteroftriangleOABequalto4+2x+2y=4+33+31=6
Commented by 1549442205PVT last updated on 04/Sep/20
Commented by ajfour last updated on 04/Sep/20
question is alright sir.
questionisalrightsir.
Commented by 1549442205PVT last updated on 05/Sep/20
Thank you ,Sir. I mistaked and corrected  E is vertex of isosceles triangle.But  my solution don′t use this hypothesis
Thankyou,Sir.ImistakedandcorrectedEisvertexofisoscelestriangle.Butmysolutiondontusethishypothesis

Leave a Reply

Your email address will not be published. Required fields are marked *