Question Number 111906 by mr W last updated on 05/Sep/20
Answered by PRITHWISH SEN 2 last updated on 22/Sep/20
$$\mathrm{Disarrangement}\:\mathrm{of}\:\mathrm{6}\:\mathrm{cards}\:!\mathrm{6}=\mathrm{265} \\ $$$$\mathrm{now}\:\mathrm{in}\:\mathrm{this}\:\mathrm{265}\:\mathrm{ways}\:\mathrm{card}\:\mathrm{no}.\:\mathrm{1}\:\mathrm{can}\:\mathrm{be}\:\mathrm{in}\: \\ $$$$\mathrm{envelope}\:\mathrm{no}.\:\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\:\mathrm{or}\:\mathrm{6}\:\mathrm{and}\:\mathrm{in}\:\mathrm{each}\:\mathrm{case}\:\mathrm{the} \\ $$$$\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}\:\mathrm{will}\:\mathrm{be}\:\mathrm{same}. \\ $$$$\therefore\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{required}}\:\boldsymbol{\mathrm{result}}\:\boldsymbol{\mathrm{will}}\:\boldsymbol{\mathrm{be}}\:=\:\frac{\mathrm{1}}{\mathrm{5}}×\mathrm{265} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{53}\:\boldsymbol{\mathrm{ways}} \\ $$$$\:\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$
Commented by mr W last updated on 22/Sep/20
$${correct}\:{sir}! \\ $$
Commented by PRITHWISH SEN 2 last updated on 22/Sep/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$