Question Number 112356 by ajfour last updated on 07/Sep/20
Commented by ajfour last updated on 07/Sep/20
$${Find}\:{minimum}\:{length}\:{of}\:{PQ}\:{in} \\ $$$${terms}\:{of}\:{a}\:{and}\:{b}.\:\:\:\:\:\:\: \\ $$
Answered by bemath last updated on 07/Sep/20
$$\mathrm{let}\:\mathrm{Q}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}\right) \\ $$$$\mathrm{tangent}\:\mathrm{line}\:\mathrm{at}\:\mathrm{Q}\Rightarrow\frac{\mathrm{y}+\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}}{\mathrm{2}}=\mathrm{x}_{\mathrm{1}} \mathrm{x}\:+\mathrm{b} \\ $$$$\mathrm{y}=\mathrm{2x}_{\mathrm{1}} \mathrm{x}+\mathrm{b}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} \:,\:\mathrm{with}\:\mathrm{gradient} \\ $$$$\mathrm{m}_{\mathrm{1}} =\:\mathrm{2x}_{\mathrm{1}} \\ $$$$\mathrm{let}\:\mathrm{P}\left(\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{a}\:,\:\mathrm{y}_{\mathrm{2}} \right)\:,\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{P}\:\mathrm{parallel} \\ $$$$\mathrm{to}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{at}\:\mathrm{P} \\ $$$$\frac{\mathrm{x}+\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{a}}{\mathrm{2}}\:=\:\mathrm{y}_{\mathrm{2}} \mathrm{y}\:+\mathrm{a} \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{x}+\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{a}}{\mathrm{y}_{\mathrm{2}} }\:\mathrm{with}\:\mathrm{gradient}\:\mathrm{m}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{y}_{\mathrm{2}} } \\ $$$$\mathrm{so}\:\mathrm{2x}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{y}_{\mathrm{2}} }\:\mathrm{or}\:\mathrm{y}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{1}} } \\ $$$$\mathrm{therefore}\:\begin{cases}{\mathrm{Q}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}\right)}\\{\mathrm{P}\left(\frac{\mathrm{1}}{\mathrm{4x}_{\mathrm{1}} ^{\mathrm{2}} }+\mathrm{a}\:,\:\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{1}} ^{\mathrm{2}} }\right)}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{\mathrm{1}} −\mathrm{a}−\frac{\mathrm{1}}{\mathrm{4x}_{\mathrm{1}} ^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}−\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{1}} ^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 07/Sep/20
$${Sir}\:{please}\:{find}\:{x}_{\mathrm{1}} \:{such}\:{that}\:{PQ}\:{be}\:{min}. \\ $$
Answered by mr W last updated on 07/Sep/20
$${P}\left({a}+{p}^{\mathrm{2}} ,{p}\right) \\ $$$${Q}\left({q},{b}+{q}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}\mid_{{Q}} =\mathrm{2}{q} \\ $$$$\frac{{dy}}{{dx}}\mid_{{P}} =\frac{\mathrm{1}}{\frac{{dx}}{{dy}}}=\frac{\mathrm{1}}{\mathrm{2}{p}} \\ $$$$\Rightarrow\mathrm{2}{q}=\frac{\mathrm{1}}{\mathrm{2}{p}} \\ $$$$\Rightarrow{pq}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{{b}+{q}^{\mathrm{2}} −{p}}{{q}−{a}−{p}^{\mathrm{2}} }=−\mathrm{2}{p} \\ $$$${b}+{q}^{\mathrm{2}} −{p}=−\mathrm{2}{pq}+\mathrm{2}{ap}+\mathrm{2}{p}^{\mathrm{3}} \\ $$$${b}+\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }−{p}=−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{ap}+\mathrm{2}{p}^{\mathrm{3}} \\ $$$$\mathrm{32}{p}^{\mathrm{5}} +\mathrm{16}\left(\mathrm{2}{a}+\mathrm{1}\right){p}^{\mathrm{3}} −\mathrm{8}\left(\mathrm{1}+\mathrm{2}{b}\right){p}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\lambda=\mathrm{2}{p} \\ $$$$\Rightarrow\lambda^{\mathrm{5}} +\mathrm{2}\left(\mathrm{1}+\mathrm{2}{a}\right)\lambda^{\mathrm{3}} −\mathrm{2}\left(\mathrm{1}+\mathrm{2}{b}\right)\lambda^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$
Commented by mr W last updated on 07/Sep/20
Commented by ajfour last updated on 07/Sep/20
$${Thank}\:{you}\:{Sir}\:;\:{very}\:{well}\:{presented}! \\ $$
Answered by ajfour last updated on 07/Sep/20
$${P}\:\left({p}^{\mathrm{2}} +{a},\:{p}\right)\:\:\:;\:\:{Q}\left({q},\:{q}^{\mathrm{2}} +{b}\right) \\ $$$${eqn}.\:{of}\:{normal}\:{at}\:{P} \\ $$$${y}−{p}=−\mathrm{2}{p}\left({x}−{p}^{\mathrm{2}} −{a}\right) \\ $$$${eqn}.\:{of}\:{normal}\:{at}\:{Q} \\ $$$${y}−{q}^{\mathrm{2}} −{b}=−\frac{\mathrm{1}}{\mathrm{2}{q}}\left({x}−{q}\right) \\ $$$$−−−−−−−−−−−−−−−−− \\ $$$$\:{pq}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\&\:\:\:{p}+\mathrm{2}{p}^{\mathrm{3}} +\mathrm{2}{ap}=\:{q}^{\mathrm{2}} +{b}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$−−−−−−−−−−−−−−−−− \\ $$$$\Rightarrow\:\:{p}+\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)={q}^{\mathrm{2}} +{b}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${L}_{{PQ}} ^{\mathrm{2}} =\left({p}^{\mathrm{2}} −{q}+{a}\right)^{\mathrm{2}} +\left({q}^{\mathrm{2}} −{p}+{b}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\:\left({p}^{\mathrm{2}} +{a}−{q}\right)^{\mathrm{2}} +\left\{\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\:\left(\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }+\mathrm{1}\right)\left\{\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\left({L}_{{PQ}} \right)_{{min}} \:=\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }\left({p}^{\mathrm{2}} +{a}−\frac{\mathrm{1}}{\mathrm{4}{p}}\right) \\ $$$$\:\:\:−−−−−−−−−−−−−−−− \\ $$