Question Number 112573 by Aina Samuel Temidayo last updated on 08/Sep/20
Answered by Rasheed.Sindhi last updated on 08/Sep/20
$${Let}\:{two}\:{numbers}\:{are}\:\mathrm{10}{a}+{b}\:\& \\ $$$$\mathrm{10}{c}+{d}\:{with}\:\mathrm{10}{a}+{b}>\mathrm{10}{c}+{d} \\ $$$${After}\:{written}\:{beside}: \\ $$$$\mathrm{100}\left(\mathrm{10}{a}+{b}\right)+\left(\mathrm{10}{c}+{d}\right) \\ $$$${Absolute}\:{differnce} \\ $$$$\:\:\:\left(\mathrm{10}{a}+{b}\right)−\left(\mathrm{10}{c}+{d}\right) \\ $$$${The}\:{equation}\:{will}\:{be} \\ $$$$\:\mathrm{100}\left(\mathrm{10}{a}+{b}\right)+\left(\mathrm{10}{c}+{d}\right) \\ $$$$\:\:\:\:\:\:−\left\{\left(\mathrm{10}{a}+{b}\right)−\left(\mathrm{10}{c}+{d}\right)\right\}=\mathrm{5481} \\ $$$${To}\:{determine}: \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{10}{a}+{b}\right)+\left(\mathrm{10}{c}+{d}\right) \\ $$$$ \\ $$$$\mathrm{1000}{a}+\mathrm{100}{b}+\mathrm{10}{c}+{d} \\ $$$$\:\:\:\:\:−\mathrm{10}{a}−{b}+\mathrm{10}{c}+{d}=\mathrm{5481} \\ $$$$\Rightarrow\mathrm{990}{a}+\mathrm{99}{b}+\mathrm{20}{c}+\mathrm{2}{d}=\mathrm{5481} \\ $$$$\Rightarrow\mathrm{99}\left(\mathrm{10}{a}+{b}\right)+\mathrm{2}\left(\mathrm{10}{c}+{d}\right)=\mathrm{5481} \\ $$$$\:\:\:\:\:\mathrm{10}{a}+{b}=\frac{\mathrm{5481}−\mathrm{2}\left(\mathrm{10}{c}+{d}\right)}{\mathrm{99}} \\ $$$$\left(\mathrm{10}{a}+{b}\right)+\left(\mathrm{10}{c}+{d}\right) \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{5481}−\mathrm{2}\left(\mathrm{10}{c}+{d}\right)}{\mathrm{99}}+\mathrm{10}{c}+{d}\:\: \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{5481}−\mathrm{2}\left(\mathrm{10}{c}+{d}\right)+\mathrm{990}{c}+\mathrm{99}{d}}{\mathrm{99}}\:\: \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{5481}+\mathrm{970}{c}+\mathrm{97}{d}}{\mathrm{99}}\:\: \\ $$$$\:\left[{We}\:{have}\:{to}\:{determine}\:{such}\:{values}\right. \\ $$$$\left.{o}\left.{f}\:{c}\:\&\:{d}\:{that}\:\frac{\mathrm{5481}+\mathrm{970}{c}+\mathrm{97}{d}}{\mathrm{99}}\:\in\mathbb{N}\right]\right] \\ $$$${Now}, \\ $$$$\:\:\mathrm{1}\leqslant{c}\leqslant\mathrm{9}\:\wedge\:\mathrm{0}\leqslant{d}\leqslant\mathrm{9}: \\ $$$${So}, \\ $$$${For}\:{c}=\mathrm{1}\:\&\:{d}=\mathrm{8}: \\ $$$$\:\:\:\:\:=\frac{\mathrm{5481}+\mathrm{970}\left(\mathrm{1}\right)+\mathrm{97}\left(\mathrm{8}\right)}{\mathrm{99}}=\mathrm{73} \\ $$$$\left({The}\:{numbers}\:{are}\:\mathrm{55}\:\&\:\mathrm{18}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 08/Sep/20
$${Completed}. \\ $$
Commented by Aina Samuel Temidayo last updated on 08/Sep/20
$$\mathrm{Please}\:\mathrm{finish}\:\mathrm{it}. \\ $$
Commented by Aina Samuel Temidayo last updated on 08/Sep/20
$$\mathrm{How}\:\mathrm{does}\:\mathrm{one}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{c}\:\mathrm{and}\:\mathrm{d}? \\ $$