Menu Close

Question-112818




Question Number 112818 by Algoritm last updated on 09/Sep/20
Commented by Algoritm last updated on 09/Sep/20
xlog_2 2^x^x  =3  ≠  2^x^x^x   =8
$$\mathrm{xlog}_{\mathrm{2}} \mathrm{2}^{\mathrm{x}^{\mathrm{x}} } =\mathrm{3}\:\:\neq\:\:\mathrm{2}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } } =\mathrm{8} \\ $$
Commented by Algoritm last updated on 09/Sep/20
x^x^x  =3
$$\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } =\mathrm{3} \\ $$
Commented by mr W last updated on 09/Sep/20
i think it′s not correct sir!  2^x^x^x   ≠(2^x^x  )^x =2^(x^x x) =2^x^(x+1)    2^x^x  ≠(2^x )^x =2^x^2
$${i}\:{think}\:{it}'{s}\:{not}\:{correct}\:{sir}! \\ $$$$\mathrm{2}^{{x}^{{x}^{{x}} } } \neq\left(\mathrm{2}^{{x}^{{x}} } \right)^{{x}} =\mathrm{2}^{{x}^{{x}} {x}} =\mathrm{2}^{{x}^{{x}+\mathrm{1}} } \\ $$$$\mathrm{2}^{{x}^{{x}} } \neq\left(\mathrm{2}^{{x}} \right)^{{x}} =\mathrm{2}^{{x}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *