Menu Close

Question-112866




Question Number 112866 by bemath last updated on 10/Sep/20
Answered by bobhans last updated on 10/Sep/20
(7) L= lim_(x→0) ((1/x))^(tan x)      L = e^(lim_(x→0) tan x.ln ((1/x))) =e^(lim_(x→0) −tan x.ln x)     L = e^(lim_(x→0) ((−ln x)/(cot x))) = e^(lim_(x→0)  ((−(1/x))/(−cosec^2 x)))     L = e^(lim_(x→0)  ((sin^2 x)/x)) = e^0  = 1
(7)L=limx0(1x)tanxL=elimtanx0x.ln(1x)=elimx0tanx.lnxL=elimx0lnxcotx=elimx01xcosec2xL=elimx0sin2xx=e0=1
Answered by Dwaipayan Shikari last updated on 10/Sep/20
5)  lim_(x→0) ((e^x −e^(−x) )/(sinx))=((e^x −1)/x)+((1−(1/e^x ))/x)=1+((e^x −1)/(e^x x))=2
5)limx0exexsinx=ex1x+11exx=1+ex1exx=2
Answered by Dwaipayan Shikari last updated on 10/Sep/20
lim_(x→0) ((e^x^2  −1)/(1−cosx))=lim_(x→0) ((e^x^2  −1)/(2sin^2 (x/2)))=2((e^x^2  −1)/x^2 )=2
limx0ex211cosx=limx0ex212sin2x2=2ex21x2=2
Answered by mathmax by abdo last updated on 10/Sep/20
5)  let use hospital theorem    lim_(x→0)   ((e^x −e^(−x) )/(sinx)) =lim_(x→0)     ((2sh(x))/(sinx)) =lim_(x→0)    ((2ch(x))/(cosx)) =2
5)letusehospitaltheoremlimx0exexsinx=limx02sh(x)sinx=limx02ch(x)cosx=2
Answered by mathmax by abdo last updated on 10/Sep/20
6) let f(x) =((e^x^2  −1)/(1−cosx))  we have e^u  ∼1+u ⇒e^x^2   ∼1+x^2  and  1−cosx ∼(x^2 /2) ⇒f(x) ∼(x^2 /(x^2 /2))=2 ⇒lim_(x→0)   f(x) =0
6)letf(x)=ex211cosxwehaveeu1+uex21+x2and1cosxx22f(x)x2x22=2limx0f(x)=0
Answered by mathmax by abdo last updated on 10/Sep/20
7) let g(x)=((1/x))^(tanx)  ⇒g(x) =e^(tanxln((1/x)))  =e^(−ln(x)tanx)   ⇒g(x)∼e^(−xlnx)  ⇒lim_(x→0)   g(x) =e^0  =1
7)letg(x)=(1x)tanxg(x)=etanxln(1x)=eln(x)tanxg(x)exlnxlimx0g(x)=e0=1

Leave a Reply

Your email address will not be published. Required fields are marked *