Menu Close

Question-112882




Question Number 112882 by bemath last updated on 10/Sep/20
Commented by bemath last updated on 10/Sep/20
prof MJs,prof Mr Abdo and other  can you help me?
$$\mathrm{prof}\:\mathrm{MJs},\mathrm{prof}\:\mathrm{Mr}\:\mathrm{Abdo}\:\mathrm{and}\:\mathrm{other} \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}? \\ $$
Commented by mathmax by abdo last updated on 10/Sep/20
all i know  and  all i have in my storeis that 0 is a even number.  (at form 2K)
$$\mathrm{all}\:\mathrm{i}\:\mathrm{know}\:\:\mathrm{and}\:\:\mathrm{all}\:\mathrm{i}\:\mathrm{have}\:\mathrm{in}\:\mathrm{my}\:\mathrm{storeis}\:\mathrm{that}\:\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{even}\:\mathrm{number}. \\ $$$$\left(\mathrm{at}\:\mathrm{form}\:\mathrm{2K}\right) \\ $$
Answered by mr W last updated on 10/Sep/20
Commented by bemath last updated on 10/Sep/20
thank you mr W. maybe you have  pdf file or book?
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{mr}\:\mathrm{W}.\:\mathrm{maybe}\:\mathrm{you}\:\mathrm{have} \\ $$$$\mathrm{pdf}\:\mathrm{file}\:\mathrm{or}\:\mathrm{book}? \\ $$
Commented by bemath last updated on 10/Sep/20
i agree with all sir that zero is an even number, but my colleagues ask if there is any book explaining that. they say zero is also divisible by 3. they say zero is not a number and not an odd number. it is an independent number.
Commented by MJS_new last updated on 10/Sep/20
6 is also divisible by 2 and 3  if 0 is “independent”, what makes it independent,  as it behaves exactly like all the even numbers?    the sum of 2 even numbers is even  0+24=24  the sum of 2 odd numbers is even  −5+5=0  the sum of 1 odd and 1 even number is odd  0+3=3    you would have to say “0 is independent as  long it doesn′t interact”.
$$\mathrm{6}\:\mathrm{is}\:\mathrm{also}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}\:\mathrm{and}\:\mathrm{3} \\ $$$$\mathrm{if}\:\mathrm{0}\:\mathrm{is}\:“\mathrm{independent}'',\:\mathrm{what}\:\mathrm{makes}\:\mathrm{it}\:\mathrm{independent}, \\ $$$$\mathrm{as}\:\mathrm{it}\:\mathrm{behaves}\:\mathrm{exactly}\:\mathrm{like}\:\mathrm{all}\:\mathrm{the}\:\mathrm{even}\:\mathrm{numbers}? \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{2}\:\mathrm{even}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{even} \\ $$$$\mathrm{0}+\mathrm{24}=\mathrm{24} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{2}\:\mathrm{odd}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{even} \\ $$$$−\mathrm{5}+\mathrm{5}=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{1}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{1}\:\mathrm{even}\:\mathrm{number}\:\mathrm{is}\:\mathrm{odd} \\ $$$$\mathrm{0}+\mathrm{3}=\mathrm{3} \\ $$$$ \\ $$$$\mathrm{you}\:\mathrm{would}\:\mathrm{have}\:\mathrm{to}\:\mathrm{say}\:“\mathrm{0}\:\mathrm{is}\:\mathrm{independent}\:\mathrm{as} \\ $$$$\mathrm{long}\:\mathrm{it}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{interact}''. \\ $$
Answered by MJS_new last updated on 10/Sep/20
a number z∈Z is called “even” ⇔ the  remainder of its division by 2 is 0  this is a definition. a definition cannot be  right or wrong.  we can only test a hypothesis:    assume 17 is even  17:2=8 remainder 1  but 1≠0 ⇒ 17 is not even    assume 0 is even  0:2=0 remainder 0 ⇒ 0 is even
$$\mathrm{a}\:\mathrm{number}\:{z}\in\mathbb{Z}\:\mathrm{is}\:\mathrm{called}\:“\mathrm{even}''\:\Leftrightarrow\:\mathrm{the} \\ $$$$\mathrm{remainder}\:\mathrm{of}\:\mathrm{its}\:\mathrm{division}\:\mathrm{by}\:\mathrm{2}\:\mathrm{is}\:\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\boldsymbol{{definition}}.\:\mathrm{a}\:\mathrm{definition}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{right}\:\mathrm{or}\:\mathrm{wrong}. \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{test}\:\mathrm{a}\:\mathrm{hypothesis}: \\ $$$$ \\ $$$$\mathrm{assume}\:\mathrm{17}\:\mathrm{is}\:\mathrm{even} \\ $$$$\mathrm{17}:\mathrm{2}=\mathrm{8}\:\mathrm{remainder}\:\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{1}\neq\mathrm{0}\:\Rightarrow\:\mathrm{17}\:\mathrm{is}\:\mathrm{not}\:\mathrm{even} \\ $$$$ \\ $$$$\mathrm{assume}\:\mathrm{0}\:\mathrm{is}\:\mathrm{even} \\ $$$$\mathrm{0}:\mathrm{2}=\mathrm{0}\:\mathrm{remainder}\:\mathrm{0}\:\Rightarrow\:\mathrm{0}\:\mathrm{is}\:\mathrm{even} \\ $$
Commented by bemath last updated on 10/Sep/20
sir. So this a matter that is our debate.  : A child will make a password in the  form of [letters_1  ],[ number_1 ],  [letters_2 ] , [ number_2 ] with condition  (1) the first letter is a vowel except I  (2) the first number is even  (3) the second letter is O  (4) the second number are selected from the   set { 1,2,4,6,8 }.  How many passwords can be   generated?  my answer is = 4×5×1×5 = 100
$$\mathrm{sir}.\:\mathrm{So}\:\mathrm{this}\:\mathrm{a}\:\mathrm{matter}\:\mathrm{that}\:\mathrm{is}\:\mathrm{our}\:\mathrm{debate}. \\ $$$$:\:\mathrm{A}\:\mathrm{child}\:\mathrm{will}\:\mathrm{make}\:\mathrm{a}\:\mathrm{password}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{form}\:\mathrm{of}\:\left[\mathrm{letters}_{\mathrm{1}} \:\right],\left[\:\mathrm{number}_{\mathrm{1}} \right], \\ $$$$\left[\mathrm{letters}_{\mathrm{2}} \right]\:,\:\left[\:\mathrm{number}_{\mathrm{2}} \right]\:\mathrm{with}\:\mathrm{condition} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{the}\:\mathrm{first}\:\mathrm{letter}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vowel}\:\mathrm{except}\:\mathrm{I} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{the}\:\mathrm{first}\:\mathrm{number}\:\mathrm{is}\:\mathrm{even} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{the}\:\mathrm{second}\:\mathrm{letter}\:\mathrm{is}\:\mathrm{O} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{the}\:\mathrm{second}\:\mathrm{number}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{from}\:\mathrm{the}\: \\ $$$$\mathrm{set}\:\left\{\:\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{8}\:\right\}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{passwords}\:\mathrm{can}\:\mathrm{be}\: \\ $$$$\mathrm{generated}? \\ $$$$\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:=\:\mathrm{4}×\mathrm{5}×\mathrm{1}×\mathrm{5}\:=\:\mathrm{100} \\ $$
Commented by bemath last updated on 10/Sep/20
but my friend answer is 80
$$\mathrm{but}\:\mathrm{my}\:\mathrm{friend}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{80} \\ $$
Commented by MJS_new last updated on 10/Sep/20
your answer is right because 0 is even.  try to prove it is not even... if somebody has  a proof, let me know, I′ll review it
$$\mathrm{your}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{right}\:\mathrm{because}\:\mathrm{0}\:\mathrm{is}\:\mathrm{even}. \\ $$$$\mathrm{try}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{even}…\:\mathrm{if}\:\mathrm{somebody}\:\mathrm{has} \\ $$$$\mathrm{a}\:\mathrm{proof},\:\mathrm{let}\:\mathrm{me}\:\mathrm{know},\:\mathrm{I}'\mathrm{ll}\:\mathrm{review}\:\mathrm{it} \\ $$
Commented by bemath last updated on 10/Sep/20
that's how my colleagues insist that zero is not an even number. my emotions were bought. they argue which book explains that it is an even number
Answered by $@y@m last updated on 10/Sep/20
Very simple.  Just google it.  And ask your friends to show  a single website which says otherwise.
$${Very}\:{simple}. \\ $$$${Just}\:{google}\:{it}. \\ $$$${And}\:{ask}\:{your}\:{friends}\:{to}\:{show} \\ $$$${a}\:{single}\:{website}\:{which}\:{says}\:{otherwise}. \\ $$
Commented by mathmax by abdo last updated on 11/Sep/20
its seems that you are open a door of philosofy....
$$\mathrm{its}\:\mathrm{seems}\:\mathrm{that}\:\mathrm{you}\:\mathrm{are}\:\mathrm{open}\:\mathrm{a}\:\mathrm{door}\:\mathrm{of}\:\mathrm{philosofy}…. \\ $$
Commented by $@y@m last updated on 11/Sep/20
������ The question itself is philosophy. Mr. Bemath knows 0 is an even number. The problem is how to convince his friend.
Commented by MJS_new last updated on 11/Sep/20
The problem is, you cannot convince anybody  who doesn′t want to follow your arguments.  I remember a person here who “proved” that  i=(√(−1))=±1, other people believe π is wrong  because its “true” value is 6.283185... not  3.141592... I also remember some fights with  someone who believes 5−2×3=9.
$$\mathrm{The}\:\mathrm{problem}\:\mathrm{is},\:\mathrm{you}\:\mathrm{cannot}\:\mathrm{convince}\:\mathrm{anybody} \\ $$$$\mathrm{who}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{want}\:\mathrm{to}\:\mathrm{follow}\:\mathrm{your}\:\mathrm{arguments}. \\ $$$$\mathrm{I}\:\mathrm{remember}\:\mathrm{a}\:\mathrm{person}\:\mathrm{here}\:\mathrm{who}\:“\mathrm{proved}''\:\mathrm{that} \\ $$$$\mathrm{i}=\sqrt{−\mathrm{1}}=\pm\mathrm{1},\:\mathrm{other}\:\mathrm{people}\:\mathrm{believe}\:\pi\:\mathrm{is}\:\mathrm{wrong} \\ $$$$\mathrm{because}\:\mathrm{its}\:“\mathrm{true}''\:\mathrm{value}\:\mathrm{is}\:\mathrm{6}.\mathrm{283185}…\:\mathrm{not} \\ $$$$\mathrm{3}.\mathrm{141592}…\:\mathrm{I}\:\mathrm{also}\:\mathrm{remember}\:\mathrm{some}\:\mathrm{fights}\:\mathrm{with} \\ $$$$\mathrm{someone}\:\mathrm{who}\:\mathrm{believes}\:\mathrm{5}−\mathrm{2}×\mathrm{3}=\mathrm{9}. \\ $$
Commented by MJS_new last updated on 11/Sep/20
definition: ∀n∈Z: if the division n:2 leaves                          the reminder 0 we call n even  this is all we need.  n can be  { ((even)),((not even = uneven =odd)),((undecideable)) :}  examples:  even: −16; 542; 6u+2∀u∈Z; 2p^2 −18∀p∈Z              generally 2k∀k∈Z  odd:   −371; 3; 8h−1∀h∈Z; 2s^2 −4t^4 +1∀s, t ∈Z              generally 2k+1∀k∈Z  undecideable: e∈Z; u×v∧u, v ∈Z, h^3 +5∧h∈Z    thesis: 0 is odd  prove: 0∈Z ⇒ 0 is odd ⇔ ∃k∈Z: 2k+1=0                 2k+1=0     ∣−1                 2k=−1       ∣÷2                 k=−(1/2) ∉Z ⇒ false ⇒ 0 is not odd  thesis: 0 is even  prove: 0∈Z ⇒ 0 is even ⇔ ∃k∈Z:2k=0                 2k=0      ∣÷2                 k=0                 testing: 2k=2×0=0 ⇒ 0 is even    note: if n∉Z we might need additional definitions  ((p/q) divided by 2 = (p/(2q)) remainder 0 ⇒^(???)  (p/q)∈Q even)
$$\boldsymbol{\mathrm{definition}}:\:\forall\boldsymbol{{n}}\in\mathbb{Z}:\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{division}}\:\boldsymbol{{n}}:\mathrm{2}\:\boldsymbol{\mathrm{leaves}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{reminder}}\:\mathrm{0}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{call}}\:\boldsymbol{{n}}\:\boldsymbol{\mathrm{even}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{all}\:\mathrm{we}\:\mathrm{need}. \\ $$$${n}\:\mathrm{can}\:\mathrm{be}\:\begin{cases}{\mathrm{even}}\\{\mathrm{not}\:\mathrm{even}\:=\:\mathrm{uneven}\:=\mathrm{odd}}\\{\mathrm{undecideable}}\end{cases} \\ $$$$\mathrm{examples}: \\ $$$$\mathrm{even}:\:−\mathrm{16};\:\mathrm{542};\:\mathrm{6}{u}+\mathrm{2}\forall{u}\in\mathbb{Z};\:\mathrm{2}{p}^{\mathrm{2}} −\mathrm{18}\forall{p}\in\mathbb{Z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{generally}\:\mathrm{2}{k}\forall{k}\in\mathbb{Z} \\ $$$$\mathrm{odd}:\:\:\:−\mathrm{371};\:\mathrm{3};\:\mathrm{8}{h}−\mathrm{1}\forall{h}\in\mathbb{Z};\:\mathrm{2}{s}^{\mathrm{2}} −\mathrm{4}{t}^{\mathrm{4}} +\mathrm{1}\forall{s},\:{t}\:\in\mathbb{Z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{generally}\:\mathrm{2}{k}+\mathrm{1}\forall{k}\in\mathbb{Z} \\ $$$$\mathrm{undecideable}:\:{e}\in\mathbb{Z};\:{u}×{v}\wedge{u},\:{v}\:\in\mathbb{Z},\:{h}^{\mathrm{3}} +\mathrm{5}\wedge{h}\in\mathbb{Z} \\ $$$$ \\ $$$$\mathrm{thesis}:\:\mathrm{0}\:\mathrm{is}\:\mathrm{odd} \\ $$$$\mathrm{prove}:\:\mathrm{0}\in\mathbb{Z}\:\Rightarrow\:\mathrm{0}\:\mathrm{is}\:\mathrm{odd}\:\Leftrightarrow\:\exists{k}\in\mathbb{Z}:\:\mathrm{2}{k}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{k}+\mathrm{1}=\mathrm{0}\:\:\:\:\:\mid−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{k}=−\mathrm{1}\:\:\:\:\:\:\:\mid\boldsymbol{\div}\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}=−\frac{\mathrm{1}}{\mathrm{2}}\:\notin\mathbb{Z}\:\Rightarrow\:\mathrm{false}\:\Rightarrow\:\mathrm{0}\:\mathrm{is}\:\mathrm{not}\:\mathrm{odd} \\ $$$$\mathrm{thesis}:\:\mathrm{0}\:\mathrm{is}\:\mathrm{even} \\ $$$$\mathrm{prove}:\:\mathrm{0}\in\mathbb{Z}\:\Rightarrow\:\mathrm{0}\:\mathrm{is}\:\mathrm{even}\:\Leftrightarrow\:\exists{k}\in\mathbb{Z}:\mathrm{2}{k}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{k}=\mathrm{0}\:\:\:\:\:\:\mid\boldsymbol{\div}\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{testing}:\:\mathrm{2}{k}=\mathrm{2}×\mathrm{0}=\mathrm{0}\:\Rightarrow\:\mathrm{0}\:\mathrm{is}\:\mathrm{even} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{note}}:\:\boldsymbol{\mathrm{if}}\:\boldsymbol{{n}}\notin\mathbb{Z}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{might}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{additional}}\:\boldsymbol{\mathrm{definitions}} \\ $$$$\left(\frac{{p}}{{q}}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{2}\:=\:\frac{{p}}{\mathrm{2}{q}}\:\mathrm{remainder}\:\mathrm{0}\:\overset{???} {\Rightarrow}\:\frac{{p}}{{q}}\in\mathbb{Q}\:\mathrm{even}\right) \\ $$
Commented by bemath last updated on 11/Sep/20
thank you prof
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{prof} \\ $$
Commented by abdomsup last updated on 11/Sep/20
simple he must give them a pizza  if  they are two he divide the   pizza by 2  and him dont eat  of they are tre  he divide the  pizza by 4 and eat with them....
$${simple}\:{he}\:{must}\:{give}\:{them}\:{a}\:{pizza} \\ $$$${if}\:\:{they}\:{are}\:{two}\:{he}\:{divide}\:{the}\: \\ $$$${pizza}\:{by}\:\mathrm{2}\:\:{and}\:{him}\:{dont}\:{eat} \\ $$$${of}\:{they}\:{are}\:{tre}\:\:{he}\:{divide}\:{the} \\ $$$${pizza}\:{by}\:\mathrm{4}\:{and}\:{eat}\:{with}\:{them}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *