Menu Close

Question-113185




Question Number 113185 by 175mohamed last updated on 11/Sep/20
Answered by mindispower last updated on 12/Sep/20
z^n −1=Π_(k=0) ^(n−1) (z−a_k )  z=−1⇒(−1)^n −1=Π_(k=0) ^(n−1) (−1−a^k )=(−1)^n Π_(k=0) ^(n−1) (1+a^k )  ⇒(1+a)(1+a^2 )....(1+a^(n−1) )=1−(−1)^n   easy too see that for n=2k=0  since (−1) is root  of unity  ⇒(1+(−1))=0
$${z}^{{n}} −\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({z}−{a}_{{k}} \right) \\ $$$${z}=−\mathrm{1}\Rightarrow\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(−\mathrm{1}−{a}^{{k}} \right)=\left(−\mathrm{1}\right)^{{n}} \underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}+{a}^{{k}} \right) \\ $$$$\Rightarrow\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{a}^{\mathrm{2}} \right)….\left(\mathrm{1}+{a}^{{n}−\mathrm{1}} \right)=\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \\ $$$${easy}\:{too}\:{see}\:{that}\:{for}\:{n}=\mathrm{2}{k}=\mathrm{0} \\ $$$${since}\:\left(−\mathrm{1}\right)\:{is}\:{root}\:\:{of}\:{unity} \\ $$$$\Rightarrow\left(\mathrm{1}+\left(−\mathrm{1}\right)\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *