Menu Close

Question-113524




Question Number 113524 by Khalmohmmad last updated on 13/Sep/20
Answered by Dwaipayan Shikari last updated on 13/Sep/20
tan^(−1) (x^2 −x^4 )=y  tany=x^2 (1−x^2 )    x→∞  tany→−∞  y=−(π/2)
$${tan}^{−\mathrm{1}} \left({x}^{\mathrm{2}} −{x}^{\mathrm{4}} \right)={y} \\ $$$${tany}={x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:\:\:\:{x}\rightarrow\infty \\ $$$${tany}\rightarrow−\infty \\ $$$${y}=−\frac{\pi}{\mathrm{2}} \\ $$
Answered by mathmax by abdo last updated on 13/Sep/20
the function x→arctanx is increazing on so   lim_(x→∞) x^2 −x^4  =lim_(x→∞) −x^4  =−∞ ⇒lim_(x→∞) arctan(x^2 −x^4 )  =lim_(x→∞)  arctan(−x^4 ) =−(π/2)
$$\mathrm{the}\:\mathrm{function}\:\mathrm{x}\rightarrow\mathrm{arctanx}\:\mathrm{is}\:\mathrm{increazing}\:\mathrm{on}\:\mathrm{so}\: \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \mathrm{x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{4}} \:=\mathrm{lim}_{\mathrm{x}\rightarrow\infty} −\mathrm{x}^{\mathrm{4}} \:=−\infty\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{4}} \right) \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \:\mathrm{arctan}\left(−\mathrm{x}^{\mathrm{4}} \right)\:=−\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *