Menu Close

Question-113578




Question Number 113578 by Algoritm last updated on 14/Sep/20
Commented by Algoritm last updated on 14/Sep/20
x=1553   prove that
x=1553provethat
Commented by Algoritm last updated on 14/Sep/20
step by step solution sir please
stepbystepsolutionsirplease
Answered by 1549442205PVT last updated on 14/Sep/20
Solution:(2006!+((4012!)/(2006!)))=x(mod 4013)  ⇔(2006!)^2 −2006!x+4012!=0(mod4013)(∗)  ⇔4.(2006!)^2 −4.2006!x+4.4012!≡0  ⇔(2.2006!−x)^2 −x^2 +4.4012!≡0  ⇔(2.2006!−x)^2 =x^2 −4.4012!(mod4013)(1)  For x=1553 we have  x^2 =1553^2 =601.4013−4⇒1553^2 =−4(mod4013).  On the other hands,  Since 4013 is prime number,by  Wilson′s theorem we have (4012!+1)⋮4013  It follows that 4012!=−1mod(4013)(2)  ⇒4.4012!=−4(mod4013)  From(1)(2)(3)we get  (2.2006!−1553)^2 =1553^2 −4.4012!(mod4013)  =−4−(−4)=0(mod4013)  ⇒(2.2016!−1553)^2 =0(mod4013)  ⇔2.2016!−1553=0(mod4013)  The last equality is always true   because of 2.2016!=2.(1.2.3....2016)  ⋮1553  Thus,we proved that (1)is true for  x=1553 or (∗)is true for x=1553.  Therefore (2006!+((4012!)/(2006!)))=1553(mod 4013)  (Q.E.D)
Solution:(2006!+4012!2006!)=x(mod4013)(2006!)22006!x+4012!=0(mod4013)()4.(2006!)24.2006!x+4.4012!0(2.2006!x)2x2+4.4012!0(2.2006!x)2=x24.4012!(mod4013)(1)Forx=1553wehavex2=15532=601.4013415532=4(mod4013).Ontheotherhands,Since4013isprimenumber,byWilsonstheoremwehave(4012!+1)4013Itfollowsthat4012!=1mod(4013)(2)4.4012!=4(mod4013)From(1)(2)(3)weget(2.2006!1553)2=155324.4012!(mod4013)=4(4)=0(mod4013)(2.2016!1553)2=0(mod4013)2.2016!1553=0(mod4013)Thelastequalityisalwaystruebecauseof2.2016!=2.(1.2.3.2016)1553Thus,weprovedthat(1)istrueforx=1553or()istrueforx=1553.Therefore(2006!+4012!2006!)=1553(mod4013)(\boldsymbolQ.\boldsymbolE.\boldsymbolD)
Commented by Algoritm last updated on 14/Sep/20
Mr you have to work without using the proven answer depending on the answer.
Mryouhavetoworkwithoutusingtheprovenanswerdependingontheanswer.
Commented by Algoritm last updated on 14/Sep/20
thanks
thanks
Commented by 1549442205PVT last updated on 14/Sep/20
Thank,you are welcome.From above result  we can prove that(2016!)^2 +1⋮4013  This is really an interesting Question
Thank,youarewelcome.Fromaboveresultwecanprovethat(2016!)2+14013ThisisreallyaninterestingQuestion
Commented by Algoritm last updated on 14/Sep/20
sir  2016!^2 +1 ⋮4013   ??? please explain in detale
sir2016!2+14013???pleaseexplainindetale
Commented by 1549442205PVT last updated on 15/Sep/20
2.2006!−1553≡0  ⇔(2.2006!)^2 ≡1553^2 ⇔4.2006!^2 ≡−4  ⇔2006!^2 ≡−1⇔(2006!)^2 +1=0(mod4013)  ⇔[2006!^2 +1]⋮4013
2.2006!15530(2.2006!)2155324.2006!242006!21(2006!)2+1=0(mod4013)[2006!2+1]4013
Commented by Algoritm last updated on 16/Sep/20
sir please help
sirpleasehelp
Commented by Algoritm last updated on 16/Sep/20
2.(2006!)=x(mod 4013)
2.(2006!)=x(mod4013)
Commented by 1549442205PVT last updated on 19/Sep/20
It had in the  proof of above problem.  It is followed from(1)(2)(3) x=1553
Ithadintheproofofaboveproblem.Itisfollowedfrom(1)(2)(3)x=1553

Leave a Reply

Your email address will not be published. Required fields are marked *