Menu Close

Question-113598




Question Number 113598 by bobhans last updated on 14/Sep/20
Answered by bemath last updated on 14/Sep/20
let me solve  lim_(x→∞)  ((27x^3 (1+(1/(3x^2 )))))^(1/(3 )) −((64x^4 (1−(1/(8x^3 )))))^(1/(4 ))  =  lim_(x→∞) 3x ((1+(1/(3x^2 ))))^(1/(3 )) −2x((1−(1/(8x^3 ))))^(1/(4 ))  =  lim_(x→∞)  3x(1+(1/(9x^2 )))−2x(1−(1/(32x^3 ))) =∞
$${let}\:{me}\:{solve} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{27}{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}} }\right)}−\sqrt[{\mathrm{4}\:}]{\mathrm{64}{x}^{\mathrm{4}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}{x}^{\mathrm{3}} }\right)}\:= \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}3}{x}\:\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}} }}−\mathrm{2}{x}\sqrt[{\mathrm{4}\:}]{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}{x}^{\mathrm{3}} }}\:= \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{3}{x}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{9}{x}^{\mathrm{2}} }\right)−\mathrm{2}{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{32}{x}^{\mathrm{3}} }\right)\:=\infty \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *