Menu Close

Question-113771




Question Number 113771 by mohammad17 last updated on 15/Sep/20
Answered by Dwaipayan Shikari last updated on 15/Sep/20
(x^2 +y^2 )−2xy(dy/dx)=0  2vx^2 (dy/dx)=(x^2 +v^2 x^2 )                y=vx ,(dy/dx)=v+x(dv/dx)  2v^2 +2vx(dv/dx)=1+v^2   2vx(dv/dx)=1−v^2   ∫((2vdv)/(1−v^2 ))=∫(dx/x)  −log(1−v^2 )=log(Cx)  (1/(1−v^2 ))=Cx  Cx−Cv^2 x=1  Cx−C(y^2 /x)=1  C(x^2 −y^2 )=x  Cx^2 −Cy^2 −x=0  x^2 −(1/C)x−y^2 =0  x^2 −C_1 x−y^2 =0
$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)−\mathrm{2}{xy}\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\mathrm{2}{vx}^{\mathrm{2}} \frac{{dy}}{{dx}}=\left({x}^{\mathrm{2}} +{v}^{\mathrm{2}} {x}^{\mathrm{2}} \right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}={vx}\:,\frac{{dy}}{{dx}}={v}+{x}\frac{{dv}}{{dx}} \\ $$$$\mathrm{2}{v}^{\mathrm{2}} +\mathrm{2}{vx}\frac{{dv}}{{dx}}=\mathrm{1}+{v}^{\mathrm{2}} \\ $$$$\mathrm{2}{vx}\frac{{dv}}{{dx}}=\mathrm{1}−{v}^{\mathrm{2}} \\ $$$$\int\frac{\mathrm{2}{vdv}}{\mathrm{1}−{v}^{\mathrm{2}} }=\int\frac{{dx}}{{x}} \\ $$$$−{log}\left(\mathrm{1}−{v}^{\mathrm{2}} \right)={log}\left({Cx}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{v}^{\mathrm{2}} }={Cx} \\ $$$${Cx}−{Cv}^{\mathrm{2}} {x}=\mathrm{1} \\ $$$${Cx}−{C}\frac{{y}^{\mathrm{2}} }{{x}}=\mathrm{1} \\ $$$${C}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)={x} \\ $$$${Cx}^{\mathrm{2}} −{Cy}^{\mathrm{2}} −{x}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{1}}{{C}}{x}−{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{C}_{\mathrm{1}} {x}−{y}^{\mathrm{2}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *