Menu Close

Question-114295




Question Number 114295 by mathdave last updated on 18/Sep/20
Answered by mr W last updated on 19/Sep/20
say the number is [abcde]  let A=a+c+e  B=b+d  A+B=41 (as given)  A−B=0 or ±11, ±22, ...  ⇒A=20, B=21 (impossible, since B<2×9=18)  ⇒A=26, B=15  ⇒A=37, B=4  (impossible, since A<3×9=27)  so we have only one possibility:  A=26, B=15  ⇒A=9+9+8  ⇒B=9+6  ⇒smallest number is 86999  ⇒largest number is 99968
$${say}\:{the}\:{number}\:{is}\:\left[{abcde}\right] \\ $$$${let}\:{A}={a}+{c}+{e} \\ $$$${B}={b}+{d} \\ $$$${A}+{B}=\mathrm{41}\:\left({as}\:{given}\right) \\ $$$${A}−{B}=\mathrm{0}\:{or}\:\pm\mathrm{11},\:\pm\mathrm{22},\:… \\ $$$$\Rightarrow{A}=\mathrm{20},\:{B}=\mathrm{21}\:\left({impossible},\:{since}\:{B}<\mathrm{2}×\mathrm{9}=\mathrm{18}\right) \\ $$$$\Rightarrow{A}=\mathrm{26},\:{B}=\mathrm{15} \\ $$$$\Rightarrow{A}=\mathrm{37},\:{B}=\mathrm{4}\:\:\left({impossible},\:{since}\:{A}<\mathrm{3}×\mathrm{9}=\mathrm{27}\right) \\ $$$${so}\:{we}\:{have}\:{only}\:{one}\:{possibility}: \\ $$$${A}=\mathrm{26},\:{B}=\mathrm{15} \\ $$$$\Rightarrow{A}=\mathrm{9}+\mathrm{9}+\mathrm{8} \\ $$$$\Rightarrow{B}=\mathrm{9}+\mathrm{6} \\ $$$$\Rightarrow{smallest}\:{number}\:{is}\:\mathrm{86999} \\ $$$$\Rightarrow{largest}\:{number}\:{is}\:\mathrm{99968} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *