Question Number 114443 by ARVIND990 last updated on 19/Sep/20
Commented by ARVIND990 last updated on 19/Sep/20
$$\mathrm{fine}\:\mathrm{the}\:\mathrm{projection}\:\mathrm{of}\:\mathrm{point}\:\overset{\rightarrow} {\mathrm{OP}}=\overset{\rightarrow} {\mathrm{p}}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{line}\:\overset{\rightarrow} {\mathrm{r}}=\overset{\rightarrow} {\mathrm{a}}+\lambda\overset{\rightarrow} {\mathrm{b}} \\ $$
Answered by mr W last updated on 19/Sep/20
$$\overset{\rightarrow} {{AP}}=\boldsymbol{{p}}−\boldsymbol{{a}} \\ $$$${say}\:\overset{\rightarrow} {{AN}}=\beta\boldsymbol{{b}} \\ $$$$\beta\mid\boldsymbol{{b}}\mid=\overset{\rightarrow} {{AP}}\centerdot\boldsymbol{{b}} \\ $$$$\Rightarrow\beta=\frac{\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\centerdot\boldsymbol{{b}}}{\mid\boldsymbol{{b}}\mid} \\ $$$$\overset{\rightarrow} {{ON}}=\overset{\rightarrow} {{OA}}+\overset{\rightarrow} {{AN}}=\boldsymbol{{a}}+\frac{\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\centerdot\boldsymbol{{b}}}{\mid\boldsymbol{{b}}\mid}\boldsymbol{{b}} \\ $$$$\overset{\rightarrow} {{PN}}=\boldsymbol{{a}}+\frac{\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\centerdot\boldsymbol{{b}}}{\mid\boldsymbol{{b}}\mid}\boldsymbol{{b}}−\boldsymbol{{p}} \\ $$$$\overset{\rightarrow} {{OQ}}=\overset{\rightarrow} {{OP}}+\mathrm{2}\overset{\rightarrow} {{PN}} \\ $$$$\Rightarrow\boldsymbol{{q}}=\mathrm{2}\boldsymbol{{a}}+\frac{\mathrm{2}\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\centerdot\boldsymbol{{b}}}{\mid\boldsymbol{{b}}\mid}\boldsymbol{{b}}−\boldsymbol{{p}} \\ $$
Commented by ARVIND990 last updated on 19/Sep/20
$$\mathrm{i}\:\mathrm{dont}\:\mathrm{understand}\:\mathrm{pls}\:\mathrm{make}\:\mathrm{a}\:\mathrm{yours}\: \\ $$$$\mathrm{digram}\:\mathrm{and}\:\mathrm{deep}\:\mathrm{solution}\:\mathrm{like}\:\mathrm{how}\: \\ $$$$\mathrm{AP}=\mathrm{p}−\mathrm{a}\:\mathrm{pls} \\ $$
Commented by ARVIND990 last updated on 19/Sep/20
$$\mathrm{and}\:\mathrm{my}\:\mathrm{question}\:\mathrm{is}\:\mathrm{projection}\:\mathrm{of}\:\overset{\rightarrow} {\mathrm{OP}}\: \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{is}\:\mid\overset{\rightarrow} {\mathrm{OP}}\mid\mathrm{cos}\theta\:\mathrm{maybe} \\ $$
Commented by ARVIND990 last updated on 19/Sep/20