Question Number 114777 by mathdave last updated on 21/Sep/20
Answered by maths mind last updated on 21/Sep/20
$$\sqrt{{x}}={t}\Rightarrow{dx}=\mathrm{2}{tdt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{tcl}_{\mathrm{2}} \left({t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{t}\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({kt}\right)}{{k}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{2}\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({kt}\right)}{{k}^{\mathrm{2}} }{tdt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({kt}\right)}{{k}^{\mathrm{2}} }{tdt}=\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\left\{\left[\frac{−{cos}\left({kt}\right)}{{k}}{t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({kt}\right)}{{k}}{dt}\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}\left[\frac{−{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{{k}^{\mathrm{3}} }\right]+\frac{\mathrm{1}}{{k}^{\mathrm{4}} }\left({sin}\left({k}\frac{\pi}{\mathrm{2}}\right)\right) \\ $$$${sin}\left(\frac{{k}\pi}{\mathrm{2}}\right)=\mathrm{0}\:\:{if}\:{k}=\mathrm{2}{m} \\ $$$${sin}\left(\frac{{k}\pi}{\mathrm{2}}\right)=\left(−\mathrm{1}\right)^{{m}} \:\:{if}\:{k}=\mathrm{2}{m}+\mathrm{1} \\ $$$${cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:\:=\mathrm{1}\:{si}\:{k}=\mathrm{4}{m},{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)=−\mathrm{1}\:{ifk}=\mathrm{4}{m}+\mathrm{2} \\ $$$${cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)=\mathrm{0}\:{if}\:{k}=\mathrm{4}{m}+\mathrm{1}\:{or}\:\mathrm{4}{m}+\mathrm{3} \\ $$$${so}\:{we}\:{get}\:\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\pi}{\mathrm{2}}.\left[\frac{−{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{{k}^{\mathrm{3}} }\right]=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\pi}{\mathrm{2}}.\left[\frac{−{cos}\left(\left(\mathrm{4}{m}+\mathrm{2}\right)\frac{\pi}{\mathrm{2}}\right)}{\left(\mathrm{4}{m}+\mathrm{2}\right)^{\mathrm{3}} }\right]\underset{{m}\geqslant\mathrm{1}} {\sum}−\frac{\pi}{\mathrm{2}}\frac{{cos}\left(\mathrm{4}{m}.\frac{\pi}{\mathrm{2}}\right)}{\left(\mathrm{4}{m}\right)^{\mathrm{3}} } \\ $$$$ \\ $$$$+\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{{sin}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{2}{m}+\mathrm{1}\right)\right)}{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\pi}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{3}} }+−\frac{\pi}{\mathrm{2}}.\underset{{m}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{64}{m}^{\mathrm{3}} }+\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{m}} }{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$=\frac{\pi}{\mathrm{16}}\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{3}} }+\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{m}} }{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\beta\left({s}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{s}} }\:\:{Dirichlet}\:{Betta}\:{function} \\ $$$$\Sigma\frac{\left(−\mathrm{1}\right)^{{m}} }{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{4}} }=\beta\left(\mathrm{4}\right),\Sigma\frac{\mathrm{1}}{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{3}} }=\left(\zeta\left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)\right)=\frac{\mathrm{7}}{\mathrm{8}}\zeta\left(\mathrm{3}\right) \\ $$$${we}\:{get} \\ $$$$=\frac{\pi}{\mathrm{16}}.\frac{\mathrm{7}}{\:\mathrm{8}}\zeta\left(\mathrm{3}\right)−\frac{\pi}{\mathrm{128}}\zeta\left(\mathrm{3}\right)+\beta\left(\mathrm{4}\right)=\frac{\mathrm{6}\pi}{\mathrm{128}}\zeta\left(\mathrm{3}\right)+\beta\left(\mathrm{4}\right)= \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cl}_{\mathrm{2}} \left(\sqrt{{t}}\right){dt}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {tcl}_{\mathrm{2}} \left({t}\right){dt}=\mathrm{2}.\left[\frac{\mathrm{6}\pi}{\mathrm{128}}+\beta\left(\mathrm{4}\right)\right] \\ $$$$=\frac{\mathrm{12}\pi}{\mathrm{128}}\zeta\left(\mathrm{3}\right)+\mathrm{2}\beta\left(\mathrm{4}\right)=\frac{\mathrm{3}\pi}{\mathrm{32}}\zeta\left(\mathrm{3}\right)+\mathrm{2}\beta\left(\mathrm{4}\right) \\ $$$$ \\ $$$$ \\ $$
Commented by Tawa11 last updated on 06/Sep/21
$$\mathrm{great}\:\mathrm{sir} \\ $$