Menu Close

Question-115472




Question Number 115472 by Khalmohmmad last updated on 26/Sep/20
Commented by malwaan last updated on 26/Sep/20
x→−∞  ∣x−2∣=−x+2  ∣x+1∣=−x−1  ∴ lim_(x→−∞)  ((3x−x+2)/(5x+x+1))   = lim_(x→−∞)  ((2x+2)/(6x+1)) = (1/3)
$${x}\rightarrow−\infty \\ $$$$\mid{x}−\mathrm{2}\mid=−{x}+\mathrm{2} \\ $$$$\mid{x}+\mathrm{1}\mid=−{x}−\mathrm{1} \\ $$$$\therefore\:\underset{{x}\rightarrow−\infty} {{lim}}\:\frac{\mathrm{3}{x}−{x}+\mathrm{2}}{\mathrm{5}{x}+{x}+\mathrm{1}}\: \\ $$$$=\:\underset{{x}\rightarrow−\infty} {{lim}}\:\frac{\mathrm{2}{x}+\mathrm{2}}{\mathrm{6}{x}+\mathrm{1}}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Answered by bemath last updated on 26/Sep/20
lim_(x→−∞)  ((3x−x∣1−(2/x)∣)/(5x+x∣1+(1/x)∣)) =  lim_(x→−∞)  ((x(3−∣1−(2/x)∣))/(x(5+∣1−(2/x)∣)))= (2/6)=(1/3)
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}{x}−{x}\mid\mathrm{1}−\frac{\mathrm{2}}{{x}}\mid}{\mathrm{5}{x}+{x}\mid\mathrm{1}+\frac{\mathrm{1}}{{x}}\mid}\:= \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{{x}\left(\mathrm{3}−\mid\mathrm{1}−\frac{\mathrm{2}}{{x}}\mid\right)}{{x}\left(\mathrm{5}+\mid\mathrm{1}−\frac{\mathrm{2}}{{x}}\mid\right)}=\:\frac{\mathrm{2}}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *