Menu Close

Question-115632




Question Number 115632 by m173 last updated on 27/Sep/20
Commented by m173 last updated on 27/Sep/20
find general solution
Commented by MJS_new last updated on 27/Sep/20
y=csin x is already the solution?!
$${y}={c}\mathrm{sin}\:{x}\:\mathrm{is}\:\mathrm{already}\:\mathrm{the}\:\mathrm{solution}?! \\ $$
Commented by mohammad17 last updated on 27/Sep/20
y=c sin(x)→(1)    y^′ =c cos(x)→(2)    (((2))/((1)))⇒(y^′ /y)=cot(x)⇒y^′ =ycot(x)    (m.o)
$${y}={c}\:{sin}\left({x}\right)\rightarrow\left(\mathrm{1}\right) \\ $$$$ \\ $$$${y}^{'} ={c}\:{cos}\left({x}\right)\rightarrow\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\frac{\left(\mathrm{2}\right)}{\left(\mathrm{1}\right)}\Rightarrow\frac{{y}^{'} }{{y}}={cot}\left({x}\right)\Rightarrow{y}^{'} ={ycot}\left({x}\right) \\ $$$$ \\ $$$$\left({m}.{o}\right) \\ $$
Commented by MJS_new last updated on 27/Sep/20
why are you doing what are you doing?
$$\mathrm{why}\:\mathrm{are}\:\mathrm{you}\:\mathrm{doing}\:\mathrm{what}\:\mathrm{are}\:\mathrm{you}\:\mathrm{doing}? \\ $$
Commented by Dwaipayan Shikari last updated on 27/Sep/20
sinx=(y/c)  x=kπ±sin^(−1) ((y/c))
$$\mathrm{sinx}=\frac{\mathrm{y}}{\mathrm{c}} \\ $$$$\mathrm{x}=\mathrm{k}\pi\pm\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{y}}{\mathrm{c}}\right) \\ $$
Commented by mathmax by abdo last updated on 27/Sep/20
i think the Q here find the diff.equation verified by y..!  y^′  =ccosx ⇒y^(′′)  =−csinx =−y ⇒y^(′′)  +y =0
$$\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{Q}\:\mathrm{here}\:\mathrm{find}\:\mathrm{the}\:\mathrm{diff}.\mathrm{equation}\:\mathrm{verified}\:\mathrm{by}\:\mathrm{y}..! \\ $$$$\mathrm{y}^{'} \:=\mathrm{ccosx}\:\Rightarrow\mathrm{y}^{''} \:=−\mathrm{csinx}\:=−\mathrm{y}\:\Rightarrow\mathrm{y}^{''} \:+\mathrm{y}\:=\mathrm{0} \\ $$
Answered by PRITHWISH SEN 2 last updated on 27/Sep/20
I think  sin x=(y/c)=sinα ( say)  x= nπ+(−1)^n sin^(−1) ((y/c))    n∈N
$$\mathrm{I}\:\mathrm{think} \\ $$$$\mathrm{sin}\:\mathrm{x}=\frac{\mathrm{y}}{\mathrm{c}}=\mathrm{sin}\alpha\:\left(\:\mathrm{say}\right) \\ $$$$\mathrm{x}=\:\mathrm{n}\pi+\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{y}}{\mathrm{c}}\right)\:\:\:\:\mathrm{n}\in\mathbb{N} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *