Menu Close

Question-115645




Question Number 115645 by ZiYangLee last updated on 27/Sep/20
Commented by Dwaipayan Shikari last updated on 27/Sep/20
(((n+1)p+(n−1)q)/((n−1)p+(n+1)q))=C  ((2np+2nq)/((n+1)p−(n−1)p+(n−1)q−(n+1)q))=((C+1)/(C−1))  2n.((p+q)/(p−q))=((C+1)/(C−1))  2n(((p/q)+1)/((p/q)−1))=((((p/q))^k +1)/(((p/q))^k −1))  2n((a+1)/(a−1))=((a^k +1)/(a^k −1))  2n(a^(k+1) +a^k −a−1)=(a^(k+1) +a−a^k −1)  2n=((a^(k+1) +a−a^k −1)/(a^(k+1) +a^k −a−1))  n>1  ((a^(k+1) +a−a^k −1)/(a^(k+1) +a^k −a−1))>2  −a^(k+1) −2a^k +a+1>0  a^k (a+2)−1(a+1)<0  a^k <((a+1)/(a+2))  klog(a)<log(((a+1)/(a+2)))  k<log(((a+1)/(a+2))).(1/(log(a)))  k<log(((p+q)/(p+2q))).(1/(log((p/q))))
(n+1)p+(n1)q(n1)p+(n+1)q=C2np+2nq(n+1)p(n1)p+(n1)q(n+1)q=C+1C12n.p+qpq=C+1C12npq+1pq1=(pq)k+1(pq)k12na+1a1=ak+1ak12n(ak+1+aka1)=(ak+1+aak1)2n=ak+1+aak1ak+1+aka1n>1ak+1+aak1ak+1+aka1>2ak+12ak+a+1>0ak(a+2)1(a+1)<0ak<a+1a+2klog(a)<log(a+1a+2)k<log(a+1a+2).1log(a)k<log(p+qp+2q).1log(pq)
Commented by PRITHWISH SEN 2 last updated on 01/Oct/20
(n+1)p−(n−1)p+(n−1)q−(n+1)q  = np+p−np+p+nq−q−np−q  = 2(p−q)  ∴((2nq+2np)/((n+1)p−(n−1)p+(n−1)q−(n+1)q))  = ((2n(p+q))/(2(p−q))) = ((n(p+q))/((p−q)))  please check
(n+1)p(n1)p+(n1)q(n+1)q=np+pnp+p+nqqnpq=2(pq)2nq+2np(n+1)p(n1)p+(n1)q(n+1)q=2n(p+q)2(pq)=n(p+q)(pq)pleasecheck
Answered by PRITHWISH SEN 2 last updated on 27/Sep/20
((n(p+q)+(p−q))/(n(p+q)−(p−q))) = ((p/q))^k   ∵p→q⇒(p−q)→0  ((n(p+q))/(n(p+q))) = ((p/q))^k   k=0 please check
n(p+q)+(pq)n(p+q)(pq)=(pq)kpq(pq)0n(p+q)n(p+q)=(pq)kk=0pleasecheck
Commented by ZiYangLee last updated on 27/Sep/20
But p is just approximately equal  to q, i think we cannot assume that  p is equal to q......hmmm
Butpisjustapproximatelyequaltoq,ithinkwecannotassumethatpisequaltoqhmmm
Commented by PRITHWISH SEN 2 last updated on 27/Sep/20
that is why I have written  p−q→0 not as p−q=0
thatiswhyIhavewrittenpq0notaspq=0
Commented by PRITHWISH SEN 2 last updated on 27/Sep/20
now if p−q=ε  ε= a very small positive quantity  then n(p+q)+ε → n(p+q)−ε  ∴ ((n(p+q)+ε)/(n(p+q)−ε)) → 1   I think
nowifpq=ϵϵ=averysmallpositivequantitythenn(p+q)+ϵn(p+q)ϵn(p+q)+ϵn(p+q)ϵ1Ithink

Leave a Reply

Your email address will not be published. Required fields are marked *