Menu Close

Question-116114




Question Number 116114 by Khalmohmmad last updated on 01/Oct/20
Answered by Dwaipayan Shikari last updated on 01/Oct/20
tan^(−1) (3+2(√2))−tan^(−1) ((1/( (√2))))  tan^(−1) ((3+2(√2)−(1/( (√2))))/(1+(3+2(√2))(1/( (√2)))))=tan^(−1) (((3+(3/( (√2))))/(1+(3/( (√2)))+2)))=tan^(−1) (1)=(π/4)
$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}+\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}+\mathrm{2}}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *