Menu Close

Question-116367




Question Number 116367 by soumyasaha last updated on 03/Oct/20
Answered by mr W last updated on 03/Oct/20
(T_1 /(sin 58°))=(T_2 /(sin 40°))=((100)/(sin (50°+32°)))  ⇒T_1 =((sin 58° ×100)/(sin 82°))=85.64 lb  ⇒T_2 =((sin 40° ×100)/(sin 82°))=64.91 lb
$$\frac{{T}_{\mathrm{1}} }{\mathrm{sin}\:\mathrm{58}°}=\frac{{T}_{\mathrm{2}} }{\mathrm{sin}\:\mathrm{40}°}=\frac{\mathrm{100}}{\mathrm{sin}\:\left(\mathrm{50}°+\mathrm{32}°\right)} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{\mathrm{sin}\:\mathrm{58}°\:×\mathrm{100}}{\mathrm{sin}\:\mathrm{82}°}=\mathrm{85}.\mathrm{64}\:{lb} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{\mathrm{sin}\:\mathrm{40}°\:×\mathrm{100}}{\mathrm{sin}\:\mathrm{82}°}=\mathrm{64}.\mathrm{91}\:{lb} \\ $$
Commented by mr W last updated on 03/Oct/20
Answered by Dwaipayan Shikari last updated on 04/Oct/20
T_1 sin50°+T_2 sin32°=100  T_1 cos50°=T_2 cos32°  (T_1 /T_2 )=((cos32°)/(cos50°))  (T_1 /T_2 )sin50°+sin32°=((100)/T_2 )  cos32°tan50°+sin32°=((100)/T_2 )  T_2 =64.912 lb  T_1 =T_2 .((cos32°)/(cos50°))=85.63 lb
$$\mathrm{T}_{\mathrm{1}} \mathrm{sin50}°+\mathrm{T}_{\mathrm{2}} \mathrm{sin32}°=\mathrm{100} \\ $$$$\mathrm{T}_{\mathrm{1}} \mathrm{cos50}°=\mathrm{T}_{\mathrm{2}} \mathrm{cos32}° \\ $$$$\frac{\mathrm{T}_{\mathrm{1}} }{\mathrm{T}_{\mathrm{2}} }=\frac{\mathrm{cos32}°}{\mathrm{cos50}°} \\ $$$$\frac{\mathrm{T}_{\mathrm{1}} }{\mathrm{T}_{\mathrm{2}} }\mathrm{sin50}°+\mathrm{sin32}°=\frac{\mathrm{100}}{\mathrm{T}_{\mathrm{2}} } \\ $$$$\mathrm{cos32}°\mathrm{tan50}°+\mathrm{sin32}°=\frac{\mathrm{100}}{\mathrm{T}_{\mathrm{2}} } \\ $$$$\mathrm{T}_{\mathrm{2}} =\mathrm{64}.\mathrm{912}\:\mathrm{lb} \\ $$$$\mathrm{T}_{\mathrm{1}} =\mathrm{T}_{\mathrm{2}} .\frac{\mathrm{cos32}°}{\mathrm{cos50}°}=\mathrm{85}.\mathrm{63}\:\mathrm{lb} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *