Menu Close

Question-116710




Question Number 116710 by ravisoni505 last updated on 06/Oct/20
Answered by maths mind last updated on 06/Oct/20
case one a=0  ∫_0 ^(2a) x^n (√(2ax−x^2 ))dx=0  other case x=2ay  ∫_0 ^(2a) x^n (√(2ax−x^2 ))dx=∫_0 ^1 (2ay)^n (√(4a^2 (y−y^2 ) ))  2ady,a∈R  =(2a)^(n+1) ∫_0 ^1 y^n ∣2a∣(√(y−y^2 ))dy  =Sign(a)(2a)^(n+2) ∫_0 ^1 y^n (√(y−y^2 ))dy=sign(a)(2a)^(n+2) ∫_0 ^1 y^n .(√y).(√(1−y))dy  ∫_0 ^1 y^n .(√y).(√(1−y))dy=∫_0 ^1 y^(n+(1/2)) (1−y)^(1/2) dy=β(n+(3/2),(3/2))  =((Γ(n+(3/2))Γ((3/2)))/(Γ(n+3)))=((Γ(n+(3/2)).(√π))/(2(n+2)!))  we get∫_0 ^(2a) x^n (√(2ax−x^2 ))dx=sign(a)(2a)^(n+2) ∫_0 ^1 y^n (√(y−y^2 ))dy  =sign(a)(2a)^(n+2) .((Γ(n+(3/2))(√π))/(2.(n+2)!))
caseonea=002axn2axx2dx=0othercasex=2ay02axn2axx2dx=01(2ay)n4a2(yy2)2ady,aR=(2a)n+101yn2ayy2dy=Sign(a)(2a)n+201ynyy2dy=sign(a)(2a)n+201yn.y.1ydy01yn.y.1ydy=01yn+12(1y)12dy=β(n+32,32)=Γ(n+32)Γ(32)Γ(n+3)=Γ(n+32).π2(n+2)!weget02axn2axx2dx=sign(a)(2a)n+201ynyy2dy=sign(a)(2a)n+2.Γ(n+32)π2.(n+2)!
Answered by mathmax by abdo last updated on 06/Oct/20
I_n =∫_0 ^(2a)  x^n (√(2ax−x^2 )) dx ⇒ I_n =∫_0 ^(2a)  x^n (√x)(√(2a−x))dx  =_((√x)=t)      ∫_0 ^(√(2a))   t^(2n) t(√(2a−t^2 ))2t dt =2 ∫_0 ^(√(2a)) t^(2n+2) (√(((√(2a)))^2 −t^2 ))dt  =_(t=(√(2a))sinθ)     2  ∫_0 ^(arcsin((√(2a))))  sin^(2n+2) θ(√(2a))cost (√(2a))cost dt  =4a ∫_0 ^(arcsin((√(2a))))    sin^(2n+2)  cos^2 t dt  =4a ∫_0 ^(arcsin((√(2a)))) sin^(2n+2) t(1−sin^2 t)dt  =4a ∫_0 ^(arcsin((√(2a))))  sin^(2n+2) t −4a ∫_0 ^(arcsinA)   sin^(2n+4) tdt  ⇒Σ_(k=0) ^n  I_k =4a Σ_(k=0) ^n  (v_k −v_(k+1) ) with v_k =∫_0 ^(arcsin((√(2a))))  sin^(2k+2)  tdt  =4a(v_0 −v_1 +v_1 −v_2 +....+v_n −v_(n+1) )  =4a (v_0 −v_(n+1) )  we have v_0 =∫_0 ^(arcsin((√(2a)))) sin^2 t dt  =(1/2)∫_0 ^(arcsin((√(2a)))) (1+cos(2t))dt =((arcsin((√(2a))))/2) +[(1/4)sin(2t)]_0 ^(arcsin((√(2a))))   =((arcsin((√(2a))))/2) +(1/2)[sint (√(1−sin^2 t))]_0 ^(arcsin((√(2a))))   =((arcsin((√(2a))))/2) +(1/2){(√(2a))(√(1−2a))}  v_(n+1) =∫_0 ^(arcsin((√(2a)))) sin^(2n+4) t dt  (wallis integral on[0,arcsin((√(2a))))  also we can determine a recurrence relation between I_n
In=02axn2axx2dxIn=02axnx2axdx=x=t02at2nt2at22tdt=202at2n+2(2a)2t2dt=t=2asinθ20arcsin(2a)sin2n+2θ2acost2acostdt=4a0arcsin(2a)sin2n+2cos2tdt=4a0arcsin(2a)sin2n+2t(1sin2t)dt=4a0arcsin(2a)sin2n+2t4a0arcsinAsin2n+4tdtk=0nIk=4ak=0n(vkvk+1)withvk=0arcsin(2a)sin2k+2tdt=4a(v0v1+v1v2+.+vnvn+1)=4a(v0vn+1)wehavev0=0arcsin(2a)sin2tdt=120arcsin(2a)(1+cos(2t))dt=arcsin(2a)2+[14sin(2t)]0arcsin(2a)=arcsin(2a)2+12[sint1sin2t]0arcsin(2a)=arcsin(2a)2+12{2a12a}vn+1=0arcsin(2a)sin2n+4tdt(wallisintegralon[0,arcsin(2a))alsowecandeterminearecurrencerelationbetweenIn

Leave a Reply

Your email address will not be published. Required fields are marked *