Question Number 117481 by I want to learn more last updated on 12/Oct/20
Answered by mr W last updated on 12/Oct/20
$${let}\:{AC}=\mathrm{1} \\ $$$$\frac{{OC}}{\mathrm{sin}\:\mathrm{20}}=\frac{{AC}}{\mathrm{sin}\:\left(\mathrm{10}+\mathrm{20}\right)} \\ $$$$\Rightarrow{OC}=\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{30}}=\mathrm{2}\:\mathrm{sin}\:\mathrm{20} \\ $$$$\frac{{BC}}{\mathrm{sin}\:\mathrm{40}}=\frac{{AC}}{\mathrm{sin}\:\left(\mathrm{30}+\mathrm{10}+\mathrm{20}+\mathrm{20}\right)} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\mathrm{40}} \\ $$$$\frac{{BC}}{\mathrm{sin}\:\left({x}+\mathrm{30}\right)}=\frac{{OC}}{\mathrm{sin}\:{x}} \\ $$$$\frac{\mathrm{sin}\:\left({x}+\mathrm{30}\right)}{\mathrm{sin}\:{x}}=\frac{{BC}}{{OC}}=\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}\:\mathrm{40}\:\mathrm{sin}\:\mathrm{20}} \\ $$$$\mathrm{cos}\:\mathrm{30}+\frac{\mathrm{sin}\:\mathrm{30}}{\mathrm{tan}\:{x}}=\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}\:\mathrm{40}\:\mathrm{sin}\:\mathrm{20}} \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:{x}}=\left(\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\mathrm{40}\:\mathrm{sin}\:\mathrm{20}}−\sqrt{\mathrm{3}}\right) \\ $$$$\Rightarrow{x}=\mathrm{80}° \\ $$
Commented by I want to learn more last updated on 12/Oct/20
$$\mathrm{T}{hanks}\:{sir}.\:{I}\:{appreciate} \\ $$
Commented by I want to learn more last updated on 12/Oct/20
$$\mathrm{sir},\:\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\:\mathrm{Q117480} \\ $$
Answered by 1549442205PVT last updated on 12/Oct/20
Commented by 1549442205PVT last updated on 12/Oct/20